• Title/Summary/Keyword: Robust algorithm

Search Result 2,732, Processing Time 0.039 seconds

Robust Lane Detection Method Under Severe Environment (악 조건 환경에서의 강건한 차선 인식 방법)

  • Lim, Dong-Hyeog;Tran, Trung-Thien;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Lane boundary detection plays a key role in the driver assistance system. This study proposes a robust method for detecting lane boundary in severe environment. First, a horizontal line detects form the original image using improved Vertical Mean Distribution Method (iVMD) and the sub-region image which is under the horizontal line, is determined. Second, we extract the lane marking from the sub-region image using Canny edge detector. Finally, K-means clustering algorithm classifi left and right lane cluster under variant illumination, cracked road, complex lane marking and passing traffic. Experimental results show that the proposed method satisfie the real-time and efficient requirement of the intelligent transportation system.

A Novel MPPT Control of a Photovoltaic System using an FLC Algorithm

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.17-25
    • /
    • 2014
  • This paper proposes a novel maximum power point tracking (MPPT) system using a fuzzy logic control (FLC) algorithm for robust in-environment changing. The power available at the output of a photovoltaic (PV) cell continues to change with radiation and temperature because a solar cell exhibits nonlinear current-voltage characteristics. Therefore, the maximum power point (MPP) of PV cells varies with radiation and temperature. The MPPT methods are used in PV systems to make full utilization of the PV array output power, which depends on radiation and temperature. The conventional MPPT control methods such as constant voltage (CV), perturbation and observation (PO) and incremental conductance (IC) have been studied but these methods are problematic in that they fail to take into account the changing environment. The proposed FLC controller is based on the fuzzy control algorithm and facilitates robust control with the environmental changes. Also, the PV systems applied FLC controller is modeled by PSIM and the response characteristics of the FLC method according to environmental variations are analyzed through comparison with the performance of conventional methods. The validity of this controller is shown through response results.

Precise Sweep Volume Computation Accelerated by GPU (GPU 가속을 이용한 정밀밀한 스웹 볼륨 경계 계산)

  • Lee, Hyunho;Kyung, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.1
    • /
    • pp.13-21
    • /
    • 2015
  • We present a robust GPU algorithm constructing a sweep volume boundary for a triangular mesh model. Sweeping geometric entities of a triangular mesh object is first approximated to a set of triangles, the envelope of which becomes the outer boundary of the sweep volume. We find the envelope by computing the arrangement of the triangle set and extracting its outmost boundary. To ensure robustness of the algorithm, we adopt random perturbation of sweep vertices and the interval arithmetic using multi-level precisions. The algorithm is implemented to perform most computation on GPU, and as a result it runs two orders of magnitude faster than other algorithms.

Vehicle Shadow Removal For Intelligent Traffic System

  • Jang, Dae-Geun;Kim, Eui-Jeong
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • The limited number of roads and the increasing number of vehicles demand the automatic regulation of overspeed vehicles, illegal vehicles, and overloaded vehicles and the automatic charge calculation depending on the type of the vehicle. To meet such requirements, it is important to remove the shadow of the vehicle as processing and recognizing an image captured by a camera. The shadow of the vehicle is likely to cause misclassification of the vehicle type due to diverse errors and mistakes occurring when detecting geometrical properties of the vehicle. In case that shadows of two different vehicles are overlapped, not only the type of the vehicles may be misclassified but also it is difficult to accurately identify the type of the vehicles. In this paper, we propose a robust algorithm to remove the shadow of a vehicle by calculating the luminance, the chrominance, the gradient density of the cast shadow from information acquired using the image subtraction of the background, and to recognize the substantial vehicle figure. Even when it is hard to detect and split a target vehicle from its shadow as shadows of vehicles are attached to each other, our robust algorithm can detect the vehicle figure only. We implemented our system with a general camera and conducted experiments on various vehicles on general roads to find out our vehicle shade removal algorithm is efficient when detecting and recognizing vehicles.

Robust Pitch Detection Algorithm for Pathological Voice inducing Pitch Halving and Doubling (피치 반감 배가를 유발하는 병적인 음성 분석을 위한 강인한 피치 검출 알고리즘)

  • Jang, Seung-Jin;Choi, Seong-Hee;Kim, Hyo-Min;Choi, Hong-Shik;Yoon, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1797-1798
    • /
    • 2007
  • In field of voice pathology, diverse statistics extracted form pitch estimation were commonly used to assess voice quality. In this study, we proposed robust pitch detection algorithm which can estimate pitch of pathological voices in benign vocal fold lesions. we also compared our proposed algorithm with three established pitch detection algorithms; autocorrelation, simplified inverse filtering technique, and nonlinear state-space embedding methods. In the database of total pathological voices of 99 and normal voices of 30, an analysis of errors related with pitch detection was evaluated between pathological and normal voices, or among the types of pathological voices. According to the results of pitch errors, gross pitch error showed some increases in cases of pathological voices; especially excessive increase in PDA based on nonlinear time-series. In an analysis of types of pathological voices classified by aperiodicity and the degree of chaos, the more voice has aperiodic and chaotic, the more growth of pitch errors increased. Consequently, it is required to survey the severity of tested voice in order to obtain accurate pitch estimates.

  • PDF

Design of robust Medical Image Security Algorithm using Watershed Division Method (워터쉐드 분할 기법을 이용한 견고한 의료 영상보안 알고리즘 설계)

  • Oh, Guan-Tack;Jung, Min-Six;Lee, Yun-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1980-1986
    • /
    • 2008
  • A digital watermarking technique used as a protection and certifying mechanism of copyrighted creations including music, still images, and videos in terms of lading any loss in data, reproduction and pursuit. This study suggests using a selected geometric invariant point through the whole processing procedure based on the invariant point so that it will be robust in a geometric transformation attack. The introduced algorithm here is based on a watershed splitting method in order to make medical images strong against RST transformation and other processing. This algorithm also proved that is has robustness against not only RST attack, but also JPEG compression attack and filtering attack.

Adversarial Shade Generation and Training Text Recognition Algorithm that is Robust to Text in Brightness (밝기 변화에 강인한 적대적 음영 생성 및 훈련 글자 인식 알고리즘)

  • Seo, Minseok;Kim, Daehan;Choi, Dong-Geol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.276-282
    • /
    • 2021
  • The system for recognizing text in natural scenes has been applied in various industries. However, due to the change in brightness that occurs in nature such as light reflection and shadow, the text recognition performance significantly decreases. To solve this problem, we propose an adversarial shadow generation and training algorithm that is robust to shadow changes. The adversarial shadow generation and training algorithm divides the entire image into a total of 9 grids, and adjusts the brightness with 4 trainable parameters for each grid. Finally, training is conducted in a adversarial relationship between the text recognition model and the shaded image generator. As the training progresses, more and more difficult shaded grid combinations occur. When training with this curriculum-learning attitude, we not only showed a performance improvement of more than 3% in the ICDAR2015 public benchmark dataset, but also confirmed that the performance improved when applied to our's android application text recognition dataset.

Lane Detection System Based on Vision Sensors Using a Robust Filter for Inner Edge Detection (차선 인접 에지 검출에 강인한 필터를 이용한 비전 센서 기반 차선 검출 시스템)

  • Shin, Juseok;Jung, Jehan;Kim, Minkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.164-170
    • /
    • 2019
  • In this paper, a lane detection and tracking algorithm based on vision sensors and employing a robust filter for inner edge detection is proposed for developing a lane departure warning system (LDWS). The lateral offset value was precisely calculated by applying the proposed filter for inner edge detection in the region of interest. The proposed algorithm was subsequently compared with an existing algorithm having lateral offset-based warning alarm occurrence time, and an average error of approximately 15ms was observed. Tests were also conducted to verify whether a warning alarm is generated when a driver departs from a lane, and an average accuracy of approximately 94% was observed. Additionally, the proposed LDWS was implemented as an embedded system, mounted on a test vehicle, and was made to travel for approximately 100km for obtaining experimental results. Obtained results indicate that the average lane detection rates at day time and night time are approximately 97% and 96%, respectively. Furthermore, the processing time of the embedded system is found to be approximately 12fps.

A Method of Lane Marker Detection Robust to Environmental Variation Using Lane Tracking (차선 추적을 이용한 환경변화에 강인한 차선 검출 방법)

  • Lee, Jihye;Yi, Kang
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1396-1406
    • /
    • 2018
  • Lane detection is a key function in developing autonomous vehicle technology. In this paper, we propose a lane marker detection algorithm robust to environmental variation targeting low cost embedded computing devices. The proposed algorithm consists of two phases: initialization phase which is slow but has relatively higher accuracy; and the tracking phase which is fast and has the reliable performance in a limited condition. The initialization phase detects lane markers using a set of filters utilizing the various features of lane markers. The tracking phase uses Kalman filter to accelerate the lane marker detection processing. In a tracking phase, we measure the reliability of the detection results and switch it to initialization phase if the confidence level becomes below a threshold. By combining the initialization and tracking phases we achieved high accuracy and acceptable computing speed even under a low cost computing resources in which we cannot use the computing intensive algorithm such as deep learning approach. Experimental results show that the detection accuracy is about 95% on average and the processing speed is about 20 frames per second with Raspberry Pi 3 which is low cost device.

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.