• 제목/요약/키워드: Robust algorithm

검색결과 2,732건 처리시간 0.031초

Fractal dimension analysis as an easy computational approach to improve breast cancer histopathological diagnosis

  • Lucas Glaucio da Silva;Waleska Rayanne Sizinia da Silva Monteiro;Tiago Medeiros de Aguiar Moreira;Maria Aparecida Esteves Rabelo;Emílio Augusto Campos Pereira de Assis;Gustavo Torres de Souza
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.6.1-6.9
    • /
    • 2021
  • Histopathology is a well-established standard diagnosis employed for the majority of malignancies, including breast cancer. Nevertheless, despite training and standardization, it is considered operator-dependent and errors are still a concern. Fractal dimension analysis is a computational image processing technique that allows assessing the degree of complexity in patterns. We aimed here at providing a robust and easily attainable method for introducing computer-assisted techniques to histopathology laboratories. Slides from two databases were used: A) Breast Cancer Histopathological; and B) Grand Challenge on Breast Cancer Histology. Set A contained 2480 images from 24 patients with benign alterations, and 5429 images from 58 patients with breast cancer. Set B comprised 100 images of each type: normal tissue, benign alterations, in situ carcinoma, and invasive carcinoma. All images were analyzed with the FracLac algorithm in the ImageJ computational environment to yield the box count fractal dimension (Db) results. Images on set A on 40x magnification were statistically different (p = 0.0003), whereas images on 400x did not present differences in their means. On set B, the mean Db values presented promising statistical differences when comparing. Normal and/or benign images to in situ and/or invasive carcinoma (all p < 0.0001). Interestingly, there was no difference when comparing normal tissue to benign alterations. These data corroborate with previous work in which fractal analysis allowed differentiating malignancies. Computer-aided diagnosis algorithms may beneficiate from using Db data; specific Db cut-off values may yield ~ 99% specificity in diagnosing breast cancer. Furthermore, the fact that it allows assessing tissue complexity, this tool may be used to understand the progression of the histological alterations in cancer.

Design and Validation of Quantum Key Management System for Construction of KREONET Quantum Cryptography Communication

  • Kyu-Seok Shim;Yong-hwan Kim;Ilkwon Sohn;Eunjoo Lee;Kwang-il Bae;Wonhyuk Lee
    • Journal of Web Engineering
    • /
    • 제21권5호
    • /
    • pp.1377-1418
    • /
    • 2022
  • As it has been recently proven that the public key-based RSA algorithms that are currently used in encryption can be unlocked by Shor's algorithm of quantum computers in a short time, conventional security systems are facing new threats, and accordingly, studies have been actively conducted on new security systems. They are classified into two typical methods: Post Quantum Cryptography (PQC) and Quantum Key Distribution (QKD). PQC aims to design conventional cryptography systems in a more robust way so that they will not be decrypted by a quantum computer in a short time whereas QKD aims to make data tapping and interception physically impossible by using quantum mechanical characteristics. In this paper, we design a quantum key management system, which is most crucial for constructing a QKD network and analyze the design requirements to apply them to Korea Research Environment Open NETwork (KREONET). The quantum key management system not only manages the lifecycle, such as storage, management, derivation, allocation, and deletion of the symmetric key generated in QKD but also enables many-to-many communication in QKD communication based on the key relay function and P2P communication to overcome the limitation of distance, which is a disadvantage of QKD. We have validated the designed quantum key management system through simulations to supplement the parts that were not considered during the initial design.

계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가 (Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions)

  • 정유란;이진영;김미애;손수진
    • 한국농림기상학회지
    • /
    • 제25권2호
    • /
    • pp.80-98
    • /
    • 2023
  • 본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.

정밀한 다중센서 영상정합을 위한 통계적 상관성의 증대기법 (Enhancement of Inter-Image Statistical Correlation for Accurate Multi-Sensor Image Registration)

  • 김경수;이진학;나종범
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.1-12
    • /
    • 2005
  • 영상정합은 동일한 장면에 대해서 서로 다른 시간 혹은 서로 다른 특성의 센서로부터 서로 다른 위치에서 얻은 영상들의 위치적 대응관계를 찾는 기법이다. 이 논문에서는 특성이 다른 적외선 센서와 광학 센서로부터 얻은 영상의 정합을 위한 새로운 알고리즘을 제안한다. 지금까지 제안된 서로 다른 특성의 영상을 위한 정합기법은 크게 특징점 기반 영상정합기법과 밝기값 기반 영상정합기법으로 구분될 수 있다. 특징점 기반의 영상정합기법은 정확하게 대응하는 특징점을 선택하는 것이 성능에 결정적인 영향을 준다 그러나 적외선 영상과 가시광선 영상에서는 특징점이 서로 같지 않은 경우가 많기 때문에 강인하지 못하다 그리고 밝기 값 기반의 정합기법에서는 정규상호정보를 유사성 척도로 사용한 영상정합기법이 가장 좋은 성능을 제공하는 것으로 알려져 있다. 그러나 정규상호정보 기반의 영상정합기법은 두 영상의 통계적 상관성이 전역적이어야 한다는 가정을 전제하는데, 적외선 영상과 가시광선 영상에서는 이를 보장하지 못하는 경우가 많아 정규상호정보를 유사성 척도로 사용하는 영상정합기법에서도 좋은 성능을 기대하기 힐들다. 따라서 이 논문에서는 적외선 영상과 가시광선 영상의 통계적 상관성의 해석에 기반한 두 단계 영상정합기법을 제안한다. 정확하고 강인한 정합을 위해서 첫 단계에서는 두 영상에서 통계적 상관성이 높은 부분을 추출하는 ESCR기법과 두 영상을 통계적 상관성이 높도록 필터링하는 ESCF기법을 수행한다. 그리고 두 번째 단계에서는 첫 단계에서의 결과 영상에 대해서 정규상호정보를 유사성 척도로 한 영상정합을 수행한다. 다양한 적외선 영상과 가시광선 영상을 이용한 실험으로부터 제안하는 두 단계 영상정합기법이 기존의 정규상호정보 기반의 영상정합기법에 비해 정확도와 강인함, 그리고 실행 속도의 측면에서 더욱 향상된 성능을 제공함을 확인하였다.

무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정 (RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery)

  • 박주언;김태헌;이창희;한유경
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.1135-1147
    • /
    • 2021
  • 고해상도 위성영상의 기하보정을 위해 촬영 당시의 위성 센서와 지표면과의 기하학적 관계를 복원하는 센서모델링 과정이 필요하다. 이를 위해 일반적으로 고해상도 위성은 RPC (Rational Polynomial Coefficient) 정보를 제공하고 있지만, 제공 RPC는 위성 센서의 위치와 자세 등에 의해 발생하는 기하왜곡을 포함하고 있다. 이러한 RPC 오차를 보정하기 위해 일반적으로 지상기준점(Ground Control Points)을 활용한다. 지상기준점을 수집하는 대표적인 방법으로 현장 측량을 통해 지상좌표를 취득하지만, 이는 위성영상의 품질이나 촬영 시기에 따른 토지피복의 변화, 기복변위 등으로 위성영상 내에서 지상기준점을 판독하기에 어려운 문제가 있다. 이에 최근에는 다양한 센서로부터 취득된 영상지도를 참조자료로 이용하여, 영상정합 기법을 통해 지상기준점 수집을 자동화할 수 있다. 본 연구에서는 무인항공기 영상을 활용하여 추출된 정합점을 통해 KOMPSAT-3A 위성영상의 RPC를 보정하고자 한다. 무인항공기 영상과 KOMPSAT-3A 위성영상의 정합점 추출을 위한 전처리 방법을 제안하고, 대표적인 특징기반 정합기법(Feature-based matching method)과 영역기반 정합기법(Area-based matching method)인 SURF (Speeded-Up Robust Features)와 위상상관(Phase Correlation) 기법을 각각 적용하여 추출된 정합점의 특성을 비교하였다. 각 기법을 통해 추출된 정합점을 활용하여 RPC 보정계수를 산출한 후, GNSS (Global Navigation Satellite System) 측량을 통해 직접 취득한 검사점에 적용하여 KOMPSAT-3A의 기하품질을 향상하였다. 제안기법의 성능 및 활용성 검증을 위해 GCP를 이용하여 보정한 결과와 비교하여 분석하였다. GCP 기반 보정 방법은 제공 RPC보다 Sample은 2.14 pixel, Line은 5.43 pixel 만큼 개선된 보정 정확도를 보였다. 그리고 SURF와 위상상관 기법을 활용한 제안기법은 제공 RPC보다 각각 Sample은 0.83 pixel, 1.49 pixel만큼 보정되었으며, Line은 4.81 pixel, 5.19 pixel만큼 개선되었다. 이를 통해 GCP 기반 위성영상 RPC 보정 방법의 대안으로 무인항공기 영상이 활용될 수 있음을 확인하였다.

MORPHEUS: 확장성이 있는 비교 쇼핑 에이전트 (MORPHEUS: A More Scalable Comparison-Shopping Agent)

  • 양재영;김태형;최중민
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권2호
    • /
    • pp.179-191
    • /
    • 2001
  • 비교 쇼핑은 웹 상에 존재하는 웹 상점으로부터 구매를 원하는 상품에 대해 저렴한 가격을 찾아주는 일종의 판매자 중개 방법이다. 보다 쉽게 확장 가능한 비교 쇼핑 시스템을 생성하기 위해서 에이전트는 각각의 준 구조화된 상점으로부터 필요한 정보만을 추출할 수 있는 wrapper를 자동으로 생성해낼 수 있어야 한다. 웹 문서를 작성하기 위한 HTML은 포함하고 잇는 정보의 의미가 아닌 브라우저를 통한 정보의 표현에 대해서만 정의하고 있다. 또한 각 웹 상점들은 사용자의 다양한 상품 검색 요구를 수용하기 위해 다양한 상품 검색 방법과 검색 결과의 출력 형태를 가진다. 따라서 자동으로 필요한 정보만을 추출하는 wrapper의 생성은 어려운 작업이다. wrapper의 귀납적인 생성은 이러한 이질적인 환경을 극복하기 위한 기술이다. 그러나 Shopbot과 같은 기존의 확장 가능한 비교 쇼핑 에에전트는 원하는 상품 정도를 추출하기 위해 강한 바이어스에 의존한다. 따라서 Shopbot은 바이어스를 따르지 않는 많은 웹 상점으로부터 wrapper를 생성할 수 없다. 본 논문에서는 강한 바이어스를 사용하지 않고 wrapper를 생성해 낼 수 있는 비교 쇼핑 에이전트 시스템인 모피우스를 제안한다. 모피우스는 간단하면서도 견고한 학습 알고리즘을 바탕으로 wrapper를 생성한다. 제안하는 학습 알고리즘의 핵심은 상품 검색 결과를 논리적 라인으로 나누고 여기서 나타나는 상품 설명 단위의 패턴으로 wrapper를 생성하는 것이다. 모피우스 대부분의 웹 상점에 대한 wrapper를 정확하게 생성해 낸다. 또한 학습하려는 검색 결과에 노이즈가 존재하는 경우에도 wrapper를 정확하게 추출할 수 있다. 모피우스는 헤더나 광고와 같은 불필요한 정보들을 제거하는 별도의 단계를 거치지 않으므로 wrapper를 빠르게 생성한다. 궁극적으로 모피우스는 새로운 웹 상점을 사용자가 자유롭게 추가, 삭제할 수 있는 환경을 제공한다.

  • PDF

고유특징과 다층 신경망을 이용한 얼굴 영상에서의 눈과 입 영역 자동 추출 (Automatic Extraction of Eye and Mouth Fields from Face Images using MultiLayer Perceptrons and Eigenfeatures)

  • 류연식;오세영
    • 전자공학회논문지CI
    • /
    • 제37권2호
    • /
    • pp.31-43
    • /
    • 2000
  • 본 논문은 얼굴영상에서 눈과 입 부위를 추출하기 위한 알고리즘을 제안하였다. 첫째로, 눈과 입의 에지 이진 화소 집합의 고유 값 (Eigenvalue) 과 고유 벡터 (Eigenvector) 로 부터 추출한 정보들은 눈과 입을 찾기 위한 좋은 특징이 된다. 눈과 입 부위의 긍정적 샘플과 부정적 샘플로부터 추출한 고유 특징들로 다층 신경망을 학습하여 특정 영역이 눈과 입 부위 포함하는 정도를 나타내도록 하였다. 둘째로, 시스템의 강건성 확보를 위해 서로 다른 구조의 단일 MLP를 묶어서 그 결과를 이용하는 Ensemble network 구조를 사용하였다. 두 눈과 입에 각각 별도의 Ensemble network을 사용하였고, 각 Ensemble network내 MLP들의 출력이 최대가 되는 영역의 중심 좌표들을 평균하여 최종 위치를 결정하였다. 셋째로, 특징 정보 추출 검색 영역을 즐기기 위해 얼굴 영상 에지 정보와 눈과 입의 위치 관계를 이용해 눈과 입의 대략적인 영역을 추출하였다. 제안된 시스템은 적은 수의 정면 얼굴에서 추출한 고유 특징들로 학습된 Ensemble network을 사용하여 학습에 사용되지 않은 다른 사람들의 정면얼굴 뿐만 아니라 일정한 범위 내 자세 변화에서도 좋은 일반화 성능을 얻고 있으며, 작은 범위 내에서의 얼굴 크기 변화나 좌우 20°이내의 자세 변화에 대해서도 신경망의 일반화 기능을 이용하여 강건한 결과를 얻고 있음을 확인하였다.

  • PDF

가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법 (A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis)

  • 안일구;김창익
    • 대한전자공학회논문지SP
    • /
    • 제48권6호
    • /
    • pp.48-60
    • /
    • 2011
  • 최근 3차원 영상과 자유 시점 영상에 대한 연구가 매우 활발하다. 다수의 카메라로부터 취득된 다시점 영상 사이를 가상적으로 이동하며 시청할 수 있는 자유 시점 렌더링은 다양한 분야에 적용될 수 있어 주목받는 연구주제이다. 하지만 다시점 카메라 시스템은 경제적인 비용 및 전송의 제약이 따른다. 이러한 문제를 해결하기 위한 대안으로 한 장의 텍스처 영상과 상응하는 깊이 영상을 이용하여 가상 시점을 생성하는 방법이 주목받고 있다. 가상 시점 생성 시 발생하는 문제점은 원래 시점에서는 객체에 의해 가려져 있던 영역이 가상시점에서는 보이게 된다는 것이다. 이 가려짐 영역을 자연스럽게 채우는 것은 가상 시점 렌더링의 질을 결정한다. 본 논문은 가상 시점 렌더링에서 필연적으로 발생하는 가려짐 영역을 깊이 기반 인페인팅을 이용하여 합성하는 방법을 제안한다. 텍스처 합성 기술에서 우수한 성능을 보인 패치 기반 비모수적 텍스처 합성 방법에서 중요한 요소는 어느 부분을 먼저 채울 지 우선순위를 결정하는 것과 어느 배경 영역으로 채울 지 예제를 결정하는 것이다. 본 논문에서는 헤시안(Hessian) 행렬 구조 텐서(structure tensor)를 이용해 잡음에 강건한 우선순위 설정 방법을 제안한다. 또한 홀 영역을 채울 적절한 배경 패치를 결정하는 데에 있어서는 깊이 영상을 이용해 배경영역을 알아내고 에피폴라 라인을 고려한 패치 결정 방법을 제안한다. 기존 방법들과 객관적인 비교와 주관적인 비교를 통하여 제안된 방법의 우수성을 보이고자 한다.

탄성변형에너지 측도를 이용한 부분적으로 가려진 이진 객체의 인식 (Recognition of Partially Occluded Binary Objects using Elastic Deformation Energy Measure)

  • 문영인;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.63-70
    • /
    • 2014
  • 주어진 이진영상 안에 존재하는 객체를 인식하기 위해서는 영상분할과 패턴정합 과정을 거친다. 영상 내의 이진 객체들이 서로 분리되었다는 조건 하에서는 면적, 경계선의 길이, 또는 그들 사이의 비례 등과 같은 대상 전체의 특징을 기술하는 전역적 특징을 이용해서 객체를 인식할 수 있지만 객체들이 서로에 의해 부분적으로 가리어져 있으면 전역적 특징은 사용될 수 없고 점, 선분 등 객체의 부분을 기술하는 국지적 특징들을 이용해서 인식해야 한다. 본 논문에서는 모델의 경계선상의 곡률이 큰 점들을 추출하여 특징점으로 삼고, 그 가운데 두 점을 택하여 하나의 국지적 특징으로 사용한다. 또한 모델과 입력영상에서 각기 추출된 국지적 특징들을 비교하여 정합함으로써 부분적으로 가려진 객체를 인식하는 방법을 제안하고 있다. 특징점의 쌍으로 표현되는 국지적 특징을 서로 비교함에 있어서 두 점간의 거리와 양 특징점에서의 그래디언트 벡터의 사이 각을 일치시키는데 필요한 탄성변형 에너지를 이용하여 국지적 특징 사이의 유사도를 정의한다. 인식대상 객체 상의 한 특징점의 레이블을 다른 특징점의 레이블들이 얼마나 지지하는 지를 계산함으로써 부분적으로 가려진 객체를 안정적으로 인식하는 방법을 제안한다. Kimia-25 데이터에 대한 실험 결과 최대 클리크 알고리즘의 4.5배의 속도로 동일한 인식률을 얻음을 보였다.

휴대폰 환경에서의 근적외선 얼굴 및 홍채 다중 인식 연구 (A Study on Multi-modal Near-IR Face and Iris Recognition on Mobile Phones)

  • 박강령;한송이;강병준;박소영
    • 전자공학회논문지CI
    • /
    • 제45권2호
    • /
    • pp.1-9
    • /
    • 2008
  • 휴대폰에서 보안 필요성이 증가함에 따라 개인 인증을 위하여 홍채, 지문, 얼굴과 같은 단일 생체 정보를 이용한 많은 연구들이 진행되었으나 단일 생체 인식에서는 인식 정확도에 한계가 있었다. 따라서 본 논문에서는 휴대폰 환경에서 고 인식율을 위해 얼굴과 홍채를 결합하는 방법에 대해 제안한다. 본 논문에서는 근적외선 조명과 근적외선 통과 필터를 부착한 휴대폰의 메가 픽셀 카메라를 사용하여 근적외선 얼굴 및 홍채 영상을 동시에 취득한 후, SVM(Support Vector Machine)을 기반으로 스코어 레벨에서 결합하였다. 또한, 저 연산의 로가리듬(Logarithm) 알고리즘을 사용한 얼굴 데이터의 조명 변화에 대한 정규화와 극 좌표계 변환 및 홍채 코드의 비트 이동 매칭에 의한 홍채 영역의 이동, 회전, 확대 및 축소에 대한 정규화를 통해 SVM의 분류 복잡도와 얼굴, 홍채 데이터의 본인 변화도를 최소화함으로써 인식 정확도를 향상시켰으며, 저 연산의 휴대폰 환경에서 정수혈 기반의 얼굴 및 홍채 인식 알고리즘을 사용하여 처리시간을 향상시켰다. 실험 결과, SVM을 사용한 인식의 정확성이 단일 생체(얼굴 또는 홍채), SUM, MAX, MIN 그리고 Weighted SUM을 사용하는 것보다 우수한 것을 알 수 있었다.