• 제목/요약/키워드: Robust Stability

검색결과 1,143건 처리시간 0.033초

연산지연을 가진 이산시간 레규레이터에 대한 강인한 안정성 유계 (Robust Stability Bounds for Discrete-Time Regulators with Computation Delays)

  • 배종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.174-180
    • /
    • 1998
  • Robust stability of discrete-time regulators which utilize state predictors to compensate computation delays is considered. Novel expressions for the return difference matrices and the complementary sensitivity matrices at the input and the output of the regulator are found to obtain simple bounds for unstructured perturbations. Robust stability for pertubations of the system matrix and /or the gain matrix is also considered. under certain restriction on the nominal system simple bounds for the pertubations are obtained directly from the characteristic equation. It is shown that as far as the effect of the computation delays concerns these bounds have explicit relation to those for the unstructured pertubations.

  • PDF

로봇부하 구동용 BLDC 모터의 강인 백스테핑 제어기 설계 (Design of a Robust Backstepping Controller for a Robotic Load Driven by a Brushless DC Motor)

  • 정원철;현근호;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2753-2755
    • /
    • 2000
  • In this paper, the robust position tracking cotroller for a brushless DC motor driving a one-link robot manipulator is proposed. By using the backstepping approach, the adaptive and robust controller is appropriately designed to ensure global stability. The proposed robust backstepping controller can compensate for estimation errors in system parameters in the system with no structural changes in the controller and without destruction of the stability. The closed-loop stability of the system is shown using Lyapunov techniques. The tracking errors are shown to be globally uniformly bounded.

  • PDF

혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계 (Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method)

  • 서성환;조희수;박홍배
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험 (Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation)

  • 한명철;하인철
    • 제어로봇시스템학회논문지
    • /
    • 제10권4호
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

리아프노프 안정성 해석에 기준한 4축 로봇 아암의 비선형 견실제어 (A Nonlinear Robust Control of Robot Arm with Four Joints Based on Lyapunov Stability Analysis)

  • 현기권;심현석;윤대식
    • 한국산업융합학회 논문집
    • /
    • 제18권3호
    • /
    • pp.157-166
    • /
    • 2015
  • In this paper, we proposed a new robust control scheme to implement stable control of robot manipulators including nonlinear perameters The proposed robust controller is composed of a nonlinear controller and linear compemsation controller. It shows a good robust performance in reaching mode which does not possess invariance property. Thus, the proposed nonlinear controller showed a good robust performance in the whole region, It was illustrated that the proposed control showed a good transient response and trajectory tracking performance for robot manipulator with four joint by experiments.

불확정성 선형 시스템의 강인 성능 보장 제어 (Robust Guaranteed Performance Control of Uncertain Linear Systems)

  • 김진훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권5호
    • /
    • pp.553-559
    • /
    • 1999
  • The robust control problem of the linear systems with uncertainty is classified as the robust stability problem guaranteeing the stability and the robust performance problem guaranteeing the disired performance. In this paper, we considered the robust performance analysis problem, which find the upper buund of the quadratic performance of the uncertain linear system, and the robust guaranteed performance controller design problem which design a controller guaranteeing the desired quadratic performance. At first, we treated the analysis problem and presented the two results; one is dependent on the performance of the nominal system and another is independent on this. And we treated the design method guaranteeing the desired performance for the uncertain linear systems, Finally, we show the usefulness of our results by numerical examples.

  • PDF

Krasovskii 정리를 이용한 로보트 매니퓰레이터의 강건제어에 관한 새로운 접근 (A new approach on the robust control for robot manipulator using Krasovskii theorem)

  • Kim, Chong-Soo;Park, Sei-Seung;Park, Chong-Kug
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.590-595
    • /
    • 1996
  • The robust control technique is generally the iterative design method to determine a robust control for perturbed system with prescribed range of perturbation based on the robust stability measure. However, robot manipulator has the structured pertubation and the unstructured one. This paper proposes the robust technique for designing controller such that the trajectory of end-effector of robot manipulator tracks asymptotically the desired trajectory for all allowable variations in the manipulator's parameter. For satisfying asymptotical stability though we can not know the bound of perturbations and the parameter variations, the relation between the unknown parameter and the parameter of nominal system can be derived from Krasovskii theorem and we construct the new robust control using that relation. (author). 12 refs., 6 figs.

  • PDF

불확실한 TS 퍼지 시스템을 위한 강인한 추종 제어기의 설계 (Robust Tracking Controller Design for TS Fuzzy System with Uncertaintie)

  • 전상원;이상준;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.1955-1957
    • /
    • 2001
  • This paper propose the design method of robust tracking controller for nonlinear TS fuzzy system with uncertainties. The robust tracking controller design is presented by constraint of robust stability for nonlinear system. A sufficient condition of the robust stability is presented by LMI(Linear Matrix Inequality) soltuion in the sense of Lyapunov for TS fuzzy system with uncertainties. The effectiveness of the proposed robust tracking con design is demonstrated through a numerical simulatio.

  • PDF

강인추적 제어를 이용한 자율 무인 잠수정의 심도제어 (Depth Control of Autonomous Underwater Vehicle Using Robust Tracking Control)

  • 채창현
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.66-72
    • /
    • 2021
  • Since the behavior of an autonomous underwater vehicle (AUV) is influenced by disturbances and moments that are not accurately known, the depth control law of AUVs must have the ability to track the input signal and to reject disturbances simultaneously. Here, we proposed robust tracking control for controlling the depth of an AUV. An augmented closed-loop system is represented by an error dynamic equation, and we can easily show the asymptotic stability of the overall system by using a Lyapunov function. The robust tracking controller is consisted of the internal model of the command signal and a state feedback controller, and it has the ability to track the input signal and reject disturbances. The closed-loop control system is robust to parameter uncertainties. Simulation results showed the control performance of the robust tracking controller to be better than that of a P + PD controller.

비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(II) - 강인 안정성 조건 (A Study on Robustness of a Two-Degree-of-Freedom Servosystem with Nonlinear Type Uncertainty(II) - Rubust Stability Condition)

  • 김영복
    • 한국해양공학회지
    • /
    • 제13권3B호
    • /
    • pp.99-105
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the condition, gain tuning can be carried out to suppress the influence of the plant uncertainties and disturbance inputs.

  • PDF