• Title/Summary/Keyword: Robust SVM

Search Result 95, Processing Time 0.028 seconds

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

Robust Decoupling Digital Control of Three-Phase Inverter for UPS (3상 UPS용 인버터의 강인한 비간섭 디지털제어)

  • Park, Jee-Ho;Heo, Tae-Won;Shin, Dong-Ryul;Roh, Tae-Kyun;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.246-255
    • /
    • 2000
  • This paper deals with a novel full digital control method of the three-phase PWM inverter for UPS. The voltage and current of output filter capacitor as state variables are the feedback control input. In addition, a double deadbeat control consisting of a d-q current minor loop and a d-q voltage major loop, both with precise decoupling, have been developed. The switching pulse width modulation based on SVM is adopted so that the capacitor current should be exactly equal to its reference current. In order to compensate the calculation time delay, the predictive control is achieved by the current·voltage observer. The load prediction is used to compensate the load disturbance by disturbance observer with deadbeat response. The experimental results show that the proposed system offers an output voltage with THD less than 2% at a full nonlinear load.

  • PDF

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

Robust Real-time Intrusion Detection System

  • Kim, Byung-Joo;Kim, Il-Kon
    • Journal of Information Processing Systems
    • /
    • v.1 no.1 s.1
    • /
    • pp.9-13
    • /
    • 2005
  • Computer security has become a critical issue with the rapid development of business and other transaction systems over the Internet. The application of artificial intelligence, machine learning and data mining techniques to intrusion detection systems has been increasing recently. But most research is focused on improving the classification performance of a classifier. Selecting important features from input data leads to simplification of the problem, and faster and more accurate detection rates. Thus selecting important features is an important issue in intrusion detection. Another issue in intrusion detection is that most of the intrusion detection systems are performed by off-line and it is not a suitable method for a real-time intrusion detection system. In this paper, we develop the real-time intrusion detection system, which combines an on-line feature extraction method with the Least Squares Support Vector Machine classifier. Applying the proposed system to KDD CUP 99 data, experimental results show that it has a remarkable feature extraction and classification performance compared to existing off-line intrusion detection systems.

Design of the Robust Hybrid Controller for Three-Phase Four-Leg Voltage Source Inverter under the Unbalance Load (불평형 부하에서 강인한 3상4족 전압형 인버터를 위한 하이브리드 제어기의 설계)

  • Doan, Van-Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.291-292
    • /
    • 2014
  • The three-phase four-leg voltage source inverter (VSI) topology can be an interesting option for the three phase-four wire system. With an additional leg, this topology can achieve superior performance with unbalanced and/or nonlinear load. This paper proposes a new hybrid controller which combines PI controller and resonant controller in synchronous frame for three phase four leg inverter. The hybrid controller is simple in structure and easy to implement. The performance of proposed controller is verified by the experiments and compared with that of the conventional PI controller.

  • PDF

Contactless Palmprint Identification Using the Pretrained VGGNet Model (사전 학습된 VGGNet 모델을 이용한 비접촉 장문 인식)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1439-1447
    • /
    • 2018
  • Palm image acquisition without contact has advantages in user convenience and hygienic issues, but such images generally display more image variations than those acquired employing a contact plate or pegs. Therefore, it is necessary to develop a palmprint identification method which is robust to affine variations. This study proposes a deep learning approach which can effectively identify contactless palmprints. In general, it is very difficult to collect enough volume of palmprint images for training a deep convolutional neural network(DCNN). So we adopted an approach to use a pretrained DCNN. We designed two new DCNNs based on the VGGNet. One combines the VGGNet with SVM. The other add a shallow network on the middle-level of the VGGNet. The experimental results with two public palmprint databases show that the proposed method performs well not only contact-based palmprints but also contactless palmprints.

Model based Facial Expression Recognition using New Feature Space (새로운 얼굴 특징공간을 이용한 모델 기반 얼굴 표정 인식)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.309-316
    • /
    • 2010
  • This paper introduces a new model based method for facial expression recognition that uses facial grid angles as feature space. In order to be able to recognize the six main facial expression, proposed method uses a grid approach and therefore it establishes a new feature space based on the angles that each gird's edge and vertex form. The way taken in the paper is robust against several affine transformations such as translation, rotation, and scaling which in other approaches are considered very harmful in the overall accuracy of a facial expression recognition algorithm. Also, this paper demonstrates the process that the feature space is created using angles and how a selection process of feature subset within this space is applied with Wrapper approach. Selected features are classified by SVM, 3-NN classifier and classification results are validated with two-tier cross validation. Proposed method shows 94% classification result and feature selection algorithm improves results by up to 10% over the full set of feature.

Robust Facial Expression Recognition Based on Signed Local Directional Pattern (Signed Local Directional Pattern을 이용한 강력한 얼굴 표정인식)

  • Ryu, Byungyong;Kim, Jaemyun;Ahn, Kiok;Song, Gihun;Chae, Oksam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.89-101
    • /
    • 2014
  • In this paper, we proposed a new local micro pattern, Signed Local Directional Pattern(SLDP). SLDP uses information of edges to represent the face's texture. This can produce a more discriminating and efficient code than other state-of-the-art methods. Each micro pattern of SLDP is encoded by sign and its major directions in which maximum edge responses exist-which allows it to distinguish among similar edge patterns that have different intensity transitions. In this paper, we divide the face image into several regions, each of which is used to calculate the distributions of the SLDP codes. Each distribution represents features of the region and these features are concatenated into a feature vector. We carried out facial expression recognition with feature vectors and SVM(Support Vector Machine) on Cohn-Kanade and JAFFE databases. SLDP shows better classification accuracy than other existing methods.

Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest (랜덤 포레스트 분류기 기반의 컨벌루션 뉴럴 네트워크를 이용한 속도제한 표지판 인식)

  • Lee, EunJu;Nam, Jae-Yeal;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.938-949
    • /
    • 2015
  • In this paper, we propose a robust speed-limit sign recognition system which is durable to any sign changes caused by exterior damage or color contrast due to light direction. For recognition of speed-limit sign, we apply CNN which is showing an outstanding performance in pattern recognition field. However, original CNN uses multiple hidden layers to extract features and uses fully-connected method with MLP(Multi-layer perceptron) on the result. Therefore, the major demerit of conventional CNN is to require a long time for training and testing. In this paper, we apply randomly-connected classifier instead of fully-connected classifier by combining random forest with output of 2 layers of CNN. We prove that the recognition results of CNN with random forest show best performance than recognition results of CNN with SVM (Support Vector Machine) or MLP classifier when we use eight speed-limit signs of GTSRB (German Traffic Sign Recognition Benchmark).

A Robust Pattern-based Feature Extraction Method for Sentiment Categorization of Korean Customer Reviews (강건한 한국어 상품평의 감정 분류를 위한 패턴 기반 자질 추출 방법)

  • Shin, Jun-Soo;Kim, Hark-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.12
    • /
    • pp.946-950
    • /
    • 2010
  • Many sentiment categorization systems based on machine learning methods use morphological analyzers in order to extract linguistic features from sentences. However, the morphological analyzers do not generally perform well in a customer review domain because online customer reviews include many spacing errors and spelling errors. These low performances of the underlying systems lead to performance decreases of the sentiment categorization systems. To resolve this problem, we propose a feature extraction method based on simple longest matching of Eojeol (a Korean spacing unit) and phoneme patterns. The two kinds of patterns are automatically constructed from a large amount of POS (part-of-speech) tagged corpus. Eojeol patterns consist of Eojeols including content words such as nouns and verbs. Phoneme patterns consist of leading consonant and vowel pairs of predicate words such as verbs and adjectives because spelling errors seldom occur in leading consonants and vowels. To evaluate the proposed method, we implemented a sentiment categorization system using a SVM (Support Vector Machine) as a machine learner. In the experiment with Korean customer reviews, the sentiment categorization system using the proposed method outperformed that using a morphological analyzer as a feature extractor.