• 제목/요약/키워드: Robust SVM

검색결과 95건 처리시간 0.019초

유전자 알고리즘을 이용한 강인한 Support vector machine 설계 (Design of Robust Support Vector Machine Using Genetic Algorithm)

  • 이희성;홍성준;이병윤;김은태
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.375-379
    • /
    • 2010
  • Support vector machine (SVM)은 튼튼한 이론적 배경을 가지고 있고 구조적 위험을 성공적으로 최소화하기 때문에 추천가 시스템과 같은 다양한 패턴 인식 분야에서 사용되고 있다. 하지만 SVM이 초평면을 결정할 때 이상점들은 margin 손실들을 가지고 있기 때문에 이들은 초평면을 결정하는데 매우 중요한 역할을 하고 있다. 그 이유로 SVM은 이상점들에게 매우 민감한 문제점을 갖는다. 강인한 SVM을 위해 우리는 이상점들의 margin 손실의 최대치를 제한하지만 이것은 non-convex 최적화 문제를 포함한다. 따라서 본 논문에서는 non-convex 최적화 문제에 적합한 유전자 알고리즘을 이용하여 강인한 SVM을 설계하는 방법을 제안한다. 제안하는 알고리즘의 우수성을 보여주기 위하여 UCI repository에서 선택된 여러 데이터베이스들을 이용한 실험을 수행하였다.

Genetic Outlier Detection for a Robust Support Vector Machine

  • Lee, Heesung;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권2호
    • /
    • pp.96-101
    • /
    • 2015
  • Support vector machine (SVM) has a strong theoretical foundation and also achieved excellent empirical success. It has been widely used in a variety of pattern recognition applications. Unfortunately, SVM also has the drawback that it is sensitive to outliers and its performance is degraded by their presence. In this paper, a new outlier detection method based on genetic algorithm (GA) is proposed for a robust SVM. The proposed method parallels the GA-based feature selection method and removes the outliers that would be considered as support vectors by the previous soft margin SVM. The proposed algorithm is applied to various data sets in the UCI repository to demonstrate its performance.

얼굴 등록자 인증을 위한 클래스 구별 특징 벡터 기반 서포트 벡터 머신 (Class Discriminating Feature Vector-based Support Vector Machine for Face Membership Authentication)

  • 김상훈;설태인;정선태;조성원
    • 전자공학회논문지CI
    • /
    • 제46권1호
    • /
    • pp.112-120
    • /
    • 2009
  • 얼굴 등록자 인증은 얼굴 인식을 기반으로 인증하고자 하는 사람이 등록자인지, 아닌지를 판별하는 것으로, 기본적으로 2클래스 분류 문제이다. 서포트 벡터 머신(Support Vector Machine, 이하 SVM)은 2 클래스 분류 문제에 효과적인 것으로 잘 알려져 있다. 얼굴 등록자 인증의 분류에 사용되었던 기존의 SVM들은 각 클래스 (등록자 클래스, 미등록자 클래스) 구성원의 얼굴 이미지로부터 추출된 이미지 특징 벡터를 이용하여 훈련되고 인증된다. 이렇게 훈련 세트 구성원들의 이미지 특징 벡터들로 훈련된 SVM은 인증시의 얼굴 이미지가 SVM 훈련 세트의 얼굴 이미지들의 조명, 자세, 표정들과 다른 인증 환경의 경우나 등록자의 가입 및 탈퇴 등으로 등록 클래스나 미등록 클래스의 구성과 크기에 변동이 생기는 인증 환경의 경우에, 강인한 성능을 보이기 어려웠다. 본 논문에서는 강인한 얼굴 등록자 인증을 위하여, 효과적인 클래스 구별 특징 벡터 기반 SVM을 제안한다. 훈련과 인증에 사용되는 특징 벡터는 2개의 클래스를 잘 구별할 수 있는 특성을 반영하도록 선택되었기 때문에 이를 이용하여 훈련된 제안된 SVM은 등록자 클래스 구성의 변화 및 얼굴 이미지에 있어서의 조명, 얼굴 자세, 얼굴 표정의 변화에 덜 영향을 받는다. 실험을 통해 제안된 SVM에 기반을 둔 얼굴 등록자 인증 방법이 기존 SVM에 기반을 둔 방법보다 성능이 더 나으며, 등록자 클래스 구성의 변화에도 강인함을 보였다.

Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow

  • Pan Chen;Fang Yi;Yan Xiang-Guo;Zheng Chong-Xun
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.637-644
    • /
    • 2006
  • Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a two-class SVM is employed to discriminate the pixels of object from background; where the SVM is trained on the data which has been analyzed using the mean shift procedure. A real-time training strategy is also developed for SVM. In second stage, as the post-processing, local watershed transform is used to separate clustering cells. Comparison with the SSF (Scale space filter) and classical watershed-based algorithm (those are often employed for cell image segmentation) is given. Experimental results demonstrate that the new method is more accurate and robust than compared methods.

다중 클래스 분류를 위한 강인한 SVM 설계 방법 - 생체 인식 데이터에의 적용 - (Robust SVM Design for Multi-Class Classification - Application to Biometric data -)

  • 조민국;박혜영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.760-762
    • /
    • 2005
  • Support vector machine(SVM)은 졸은 일반화 능력을 가진 학습시스템으로, 최근 다양한 패턴 인식 분야에서 적용되고 있다. SVM은 기본적으로 이진 분류기이므로 두 개 이상의 클래스를 분류하기 위해서는 다중 클래스 분류가 가능한 형태로의 설계 방법이 필요하다. 이를 위해 각 클래스별로 독립적인 SVM들을 만들어 결과를 병합하는 방식이 주로 사용되어 왔다. 그러나 이러한 방법은 클래스의 수는 않고 한 클래스 내의 데이터의 수가 많지 않은 경우에는 SVM의 일반화 성능을 저하시키고 노이즈에 민감해지는 문제점을 가지고 있다. 이를 해결하기 위해 본 논문에서는 각 클래스내의 데이터간의 유사도 측정을 위한 통계적 정보를 안정적으로 추출하기 위해 두 데이터의 쌍을 입력으로 받는 새로운 SVM 설계 방법을 제시한다. 제안한 방법을 실제 생체인식 데이터에 적용한 실험에서 기존의 방법보다 우수한 분류 성능을 보임을 확인할 수 있었다.

  • PDF

개선된 QIM과 SVM을 이용한 공격에 강인한 다중 오디오 워터마킹 알고리즘 개발 (Development of a Robust Multiple Audio Watermarking Using Improved Quantization Index Modulation and Support Vector Machine)

  • 서예진;조상진;정의필
    • 융합신호처리학회논문지
    • /
    • 제16권2호
    • /
    • pp.63-68
    • /
    • 2015
  • 본 논문에서는 신호의 파워에 따라 적응적 스텝 사이즈를 갖는 개선된 QIM(Quantization index modulation)과 SVM(Support vector machine) 디코딩 모델을 이용한 다중 오디오 워터마킹 알고리즘을 제안한다. 워터마크는 주파수 크기 응답과 주파수 위상 응답에 QIM을 이용하여 삽입한다. 이는 주파수 크기 응답과 위상 응답에 강인한 공격이 다르기 때문에 양쪽 모두 삽입하여 강인성을 보완하기 위해서이다. 검출시에는 SVM 디코딩 모델을 사용하여 검출된 워터마크가 워터마크로서의 기능이 애매모호한 경우를 개선하여 검출 비율을 향상시킨다. 강인성 검증을 위해 11개의 공격을 사용하였고 그 결과 SVM 디코딩 모델을 사용하지 않은 기존의 다중 오디오 워터마킹 방법보다 훨씬 우수한 성능을 보였다. 특히 PSNR은 최대 7dB의 개선 효과를, BER은 10%의 개선 효과를 보인 것은 주목할 만한 결과이다.

Eye Detection in Facial Images Using Zernike Moments with SVM

  • Kim, Hyoung-Joon;Kim, Whoi-Yul
    • ETRI Journal
    • /
    • 제30권2호
    • /
    • pp.335-337
    • /
    • 2008
  • An eye detection method for facial images using Zernike moments with a support vector machine (SVM) is proposed. Eye/non-eye patterns are represented in terms of the magnitude of Zernike moments and then classified by the SVM. Due to the rotation-invariant characteristics of the magnitude of Zernike moments, the method is robust against rotation, which is demonstrated using rotated images from the ORL database. Experiments with TV drama videos showed that the proposed method achieved a 94.6% detection rate, which is a higher performance level than that achievable by the method that uses gray values with an SVM.

  • PDF

Weighted Support Vector Machines with the SCAD Penalty

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제20권6호
    • /
    • pp.481-490
    • /
    • 2013
  • Classification is an important research area as data can be easily obtained even if the number of predictors becomes huge. The support vector machine(SVM) is widely used to classify a subject into a predetermined group because it gives sound theoretical background and better performance than other methods in many applications. The SVM can be viewed as a penalized method with the hinge loss function and penalty functions. Instead of $L_2$ penalty function Fan and Li (2001) proposed the smoothly clipped absolute deviation(SCAD) satisfying good statistical properties. Despite the ability of SVMs, they have drawbacks of non-robustness when there are outliers in the data. We develop a robust SVM method using a weight function with the SCAD penalty function based on the local quadratic approximation. We compare the performance of the proposed SVM with the SVM using the $L_1$ and $L_2$ penalty functions.

SVM음성인식기 구현을 위한 강인한 특징 파라메터 (Robust Feature Parameter for Implementation of Speech Recognizer Using Support Vector Machines)

  • 김창근;박정원;허강인
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.195-200
    • /
    • 2004
  • 본 논문은 두 가지 비교 실험을 통하여 효과적 음성인식 시스템을 제안한다. 분별적 이진 패턴 분류기인 SVM(Support Vector Machines)은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있다. 본 논문에서는 학습데이터 수에 따른 HMM(Hidden Markov Model)과 SVM의 인식 성능을 비교하고, 최적의 특징 파라메터를 선택하기 위해 SVM을 이용하여 주성분해석과 독립성분분석을 적용하여 MFCC(Mel Frequency Cepstrum Coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 SVM은 HMM에 비해 적은 학습데이터에서도 높은 인식 성능을 보여주었고, 독립성분분석에 의한 특징 파라메터가 특징 공간상에서의 높은 선형 분별성에 의해 다른 특징 파라메터보다 인식 성능에서 우수함을 확인 할 수 있었다.

Adaptive Switching Median Filter for Impulse Noise Removal Based on Support Vector Machines

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Ok;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • 제18권6호
    • /
    • pp.871-886
    • /
    • 2011
  • This paper proposes a powerful SVM-ASM filter, the adaptive switching median(ASM) filter based on support vector machines(SVMs), to effectively reduce impulse noise in corrupted images while preserving image details and features. The proposed SVM-ASM filter is composed of two stages: SVM impulse detection and ASM filtering. SVM impulse detection determines whether the pixels are corrupted by noise or not according to an optimal discrimination function. ASM filtering implements the image filtering with a variable window size to effectively remove the noisy pixels determined by the SVM impulse detection. Experimental results show that the SVM-ASM filter performs significantly better than many other existing filters for denoising impulse noise even in highly corrupted images with regard to noise suppression and detail preservation. The SVM-ASM filter is also extremely robust with respect to various test images and various percentages of image noise.