• Title/Summary/Keyword: Robust Controller

Search Result 2,057, Processing Time 0.028 seconds

A study on the design of $H_{2}$/$H_{\infty}$ robust controller-polynomial approach ($H_{2}$/$H_{\infty}$ 강인제어기 설계에 관한 연구-다항식 접근방법)

  • 박승규;송대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.751-753
    • /
    • 1996
  • The $H_{2}$/$H_{\infty}$ robust controller is designed by using polynomial approach. This controller can minimise a $H_{2}$ norm of error under the fixed bound of $H_{\infty}$ norm of mixed sensitivity function by employing the Youla parameterization and using polynomial approach at the same time. It is easy to apply this controller to adaptive system.

  • PDF

Robust controller design of underwater vehicle against structured perturbation (구조화된 교란에 대한 수중 운동체의 견실 제어기 설계)

  • 이갑래;김삼수;이재명;박성희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.850-856
    • /
    • 1992
  • The problem of robust control of a underwater vehicle subject to variation of a real parameter and velocity is considered. The controller set which stabilized perturbed plant is chosen using numerical gradient method and the controller is used for nominal performance and robust performance. Simulation results are presented to show that the precise montion control of the controller is accomplished under perturbation in the system.

  • PDF

Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method (시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results

Robust QFT(Quantitative Feedback Theory) Controller Design of Parallel Link (평행링크 매니퓰레이터의 강인한 QFT(Quantitative Feedback Theory)제어기 설계)

  • Kang, Min-Goo;Byun, Gi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2249-2251
    • /
    • 2001
  • This paper proposes that it minimizes interference between link at high speed trajectory tracking of 2-degree parallel link manipulator and QFT(Quantitative Feedback Theory) controller which robust structure uncertainty and disturbance of plant. And using ICD(Individual Channel Design), it separates two channel from multivariable system, parallel link manipulator and designs robust controller with applying MISO QFT to each channel. Finally, we make sure of robustness and excellence of QFT controller through simulation and experiment.

  • PDF

A Differential Supervisory Controller for Robustness Increase of Feedback Control System (궤환 제어시스템의 강인성 증진을 위한 미분 관리제어기)

  • 박왈서
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.8
    • /
    • pp.363-367
    • /
    • 2003
  • Robust control for feedback control system is needed according to the highest precision of industrial automation. However, when a feedback control system has an effect of disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, Hybrid control method of feedback and Differential Supervisory controller is presented. A Feedback Controller is operated as a main controller, A Differential Supervisory Controller is a controller which operates only when some undesirable phenomena occur, e. g., when the error hits the boundary of constraint set. The robust control function of Differential Supervisory Controller, as a assistant controller is operated when state is unstable by disturbance. it demonstrated by speed control of motor.

Robust Stabilization and Guaranteed Cost Control for Discrete-time Singular Systems with Parameter Uncertainties (변수 불확실성을 가지는 이산시간 특이시스템의 강인 안정화 및 강인 보장비용 제어)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • In this paper, we consider the design problem of robust stabilization and robust guaranteed cost state feedback controller for discrete-time singular systems with parameter uncertainties by LMI(linear matrix inequality) approach without semi-definite condition and decomposition of system matrices. The objective of robust stabilization controller is to construct a state feedback controller such that the closed-loop system is regular, causal, and stable. In the case of robust guaranteed cost control, the optimal value of guaranteed cost and controller design method are presented on the basis of robust stabilization control technique. Finally, a numerical example is provided to show the validity of the design methods.

Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System (초전도 플라이휠 에너지 저장장치의 강인제어를 이용한 전력계통의 저주파진동 억제)

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using $H_{\infty}$ control theory was designed to damp low frequency oscillation of power system. The main advantage of the $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity $H_{\infty}$ problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using $H_{\infty}$ control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed $H_{\infty}$ SFESS controller was more robust than conventional power system stabilizer (PSS).

Design of a Robust Tracking Controller by the Estimation of Vibration Quantity (진동량 추정을 통한 강인 트랙킹 제어기의 설계)

  • Lee, Moon-Noh;Jin, Kyoung-Bog;Yun, Ki-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.856-860
    • /
    • 2007
  • This paper presents a robust tracking controller design method for the track-following system of an optical recording device. A tracking loop gain adjustment algorithm is introduced to accurately estimate the tracking vibration quantity in spite of the uncertainties of the tracking actuator. A minimum tracking open-loop gain is calculated by the estimated tracking vibration quantity and a tolerable limit of tracking error. A robust tracking controller is designed by considering a robust $H_\infty$ control problem with the weighting function of a slightly larger gain than the minimum tracking open-loop gain. The proposed controller design method is applied to the track-following system of an optical recording device and is evaluated through the experimental result.

Nonlinear Robust Control of Passenger Car Torque Converter Bypass Clutch (승용차용 토크컨버터 바이패스 클러치의 비선형 견실제어)

  • Han, Jin-Oh;Kang, Soo-Joon;Lee, Kyo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1251-1258
    • /
    • 2003
  • This paper presents a nonlinear robust approach to the slip control problem for a torque converter bypass clutch in a passenger car. The proposed nonlinear robust controller builds upon only the measurements avail-able from inexpensive sensors that are already installed in passenger cars for control. The issue of torque estimation problems for the implementation of the proposed controller is addressed. The stability of the internal dynamics is investigated, upon which a nonlinear robust controller is designed using input-output feedback linearization and Lyapunov redesign technique. The performance of the designed controller is validated by simulation studies.