• Title/Summary/Keyword: Robust Controller

Search Result 2,057, Processing Time 0.025 seconds

Robust position control of DC motor using fuzzy acceleration control (퍼지 가속도제어를 이용한 직류전동기의 강인한 위치제어)

  • 박귀태;이기상;배상욱;박태홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.451-456
    • /
    • 1991
  • A robust position control scheme for DC Motor is proposed based on Fuzzy Acceleration Control. Proposed control system has the similar structure that Y. Hori proposed. But the PI type acceleration controller of it is replaced by Fuzzy Logic Controller(FLC) which is known to be robust to the operating point and parameter variations. By the simulation study for a real DC Motor, we have slowed the superiority to the continuous PI acceleration controller in the view point of robustness to the operating point and parameter variations.

  • PDF

Robust Control of a Robot Manipulator with Revolute Joints (회전 관절형 로봇 매니플레이터의 강인제어)

  • 신규현;이수한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.77-83
    • /
    • 2003
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of revolute joint robot dynamics. The stability of the robot with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot system is stable, and has excellent trajectory tracking performance.

Robust stabilization of linear discrete time systems with uncertain dynamics (불확실성이 있는 이산 시간 시스템의 강인 제어기 설계)

  • 이재원;이준화;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.742-746
    • /
    • 1992
  • This paper proposes a new linear robust state feedback controller for the linear discrete time systems which have uncertainties in the state and input matrices. The uncertainties need not satisfy the matching conditions, but only their bounds are needed to be known. The proposed controller is derived from the linear quadratic game problem, which solution is obtained via the modified algebraic Riccati equation. The controller guarantees the robust performance bound. The bound of the solution and the condition of the uncertainties, which can stabilize the uncertain system are explored.

  • PDF

Robust servomechanism problem for linear discrete systems (선형 이산치 시스템의 Robust Servomechanism 문제)

  • ;Na, Seung You
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.135-138
    • /
    • 1987
  • A method for designing a robust tracking controller for linear discrete systems is investigated. Only the observable variables are to be used in the controller synthesis. To insure the robustness, the system is augmented by a compensator at the output side. Then a feedback controller is designed using delayed values of the observable variables for the augmented system. The delay times are chosen to minimize the effect of measurement accuracy and/or noise.

  • PDF

Design of a Controller using Algorithm in the Robust Controller (강인제어기 알고리즘을 이용한 제어기 설계)

  • Hwang, Yu-Sub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.215-220
    • /
    • 2004
  • In this paper, some algorithms for robust stabilization of linerar time - invariant single - input - multi output (SIMO) systems subject to parameter perturbatations are presented. At first, the determination algorithm of the largest stable hypersphere in the parameter space of a given characteristic polynomial with its coefficient perturbations near some stable nominal values is presented. These algorithms iteratively enlarge the stability hypersph ere in plant parameter space and can be used to design a controller to stabilize a plant subject to givien range of parameter ecxursions.

  • PDF

Robust Control of a Robot Manipulator with Revolute Joints (회전 관절형 로봇 매니플레이터의 강인제어)

  • 신규현;이수한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.435-438
    • /
    • 2002
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of serial link robot dynamics. The stability of the robot with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot system is stable, and has excellent trajectory tracking performance.

  • PDF

Robust Observer-based $H_\infty$ Controller Design Method for Singular Systems with Parameter Uncertainties (매개변수 불확실성을 가지는 특이시스템의 강인 관측기 기반 $H_\infty$ 제어기 설계방법)

  • Kim Jong-Hae;Ahn Seong-Joon;Ahn Seung-Joon;Oh Do-Chang;Chi Kyeong-Koo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • This paper considers a robust observer-based H/sub ∞/ controller design method for singular systems with parameter uncertainties using an LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by a perfect LMI condition in terms of all variables using singular value decomposition, Schur complement, and change of variables. Therefore, one of the main advantages is that a robust observer-based H/sub ∞/ controller can be established by solving one LMI condition compared with existing results. Numerical example is given to illustrate the effectiveness of the proposed controller design method.

Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어)

  • Jang, Ji-Seong;Han, Seung-Hun
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

Robust and Non-fragile $H_{\infty}$ Control for Descriptor Systems with Parameter Uncertainties and Time Delay

  • Kim, Jong-Hae;Oh, Do-Chang
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • This paper describes a robust and non-fragile $H_{\infty}$ controller design method for descriptor systems with parameter uncertainties and time delay, as well as a static state feedback controller with multiplicative uncertainty. The controller existence condition, as well as its design method, and the measure of non-fragility in the controller are proposed using linear matrix inequality(LMI) technique, which can be solved efficiently by convex optimization. Therefore, the presented robust and non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop systems within a prescribed degree in spite of parameter uncertainties, time delay, disturbance input and controller fragility.

Optimum Tuning of PID-PD Controller considering Robust Stability and Sensor Noise Insensitivity (센서 잡음 저감도 및 안정-강인성을 고려한 PID-PD 제어기의 최적 동조)

  • Kim, Chang-Hyun;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.628-631
    • /
    • 2005
  • In this paper, we propose tuning method of PID-PD controller to satisfy design specifications in frequency domain as well as time domain. The proposed tuning method of PID-PD controller that consist of the convex set of PID and PI-PD controller controls the closed-loop response to locate between the step responses, and Bode magnitudes of closed-loop transfer functions controlled by PID and PI-PD controller. The controller is designed by the optimum tuning method to minimize the proposed specific cost function subject to sensor noise insensitivity and robust stability. Its effectiveness is examined by the case study and analysis.

  • PDF