• 제목/요약/키워드: Robots

검색결과 3,117건 처리시간 0.025초

유동적인 군집대형을 기반으로 하는 군집로봇의 경로 계획 (An Advanced Path Planning of Clustered Multiple Robots Based on Flexible Formation)

  • 위성길;딜샷사이토프;최경식;이석규
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1321-1330
    • /
    • 2012
  • This paper describes an advanced formation algorithm of clustered multiple robots for their navigation using flexible formation method for collision avoidance under static environment like narrow corridors. A group of clustered multiple robots finds the lowest path cost for navigation by changing its formation. The suggested flexible method of formation transforms the basic group of mobile robots into specific form when it is confronted by particular geographic feature. In addition, the proposed method suggests to choose a leader robot of the group for the obstacle avoidance and path planning. Firstly, the group of robots forms basic shapes such as triangle, square, pentagon and etc. depending on number of robots. Secondly, the closest to the target location robot is chosen as a leader robot. The chosen leader robot uses $A^*$ for reaching the goal location. The proposed approach improves autonomous formation characteristics and performance of all system.

Fuzzy Logic Based Navigation for Multiple Mobile Robots in Indoor Environments

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.305-314
    • /
    • 2015
  • The work presented in this paper deals with a navigation problem for multiple mobile robot system in unknown indoor environments. The environment is completely unknown for all the robots and the surrounding information should be detected by the proximity sensors installed on the robots' bodies. In order to guide all the robots to move along collision-free paths and reach the goal positions, a navigation method based on the combination of a set of primary strategies has been developed. The indoor environments usually contain convex and concave obstacles. In this work, a danger judgment strategy in accordance with the sensors' data is used for avoiding small convex obstacles or moving objects which include both dynamic obstacles and other robots. For big convex obstacles or concave ones, a wall following strategy is designed for dealing with these special situations. In this paper, a state memorizing strategy is also proposed for the "infinite repetition" or "dead cycle" situations. Finally, when there is no collision risk, the robots will be guided towards the targets according to a target positioning strategy. Most of these strategies are achieved by the means of fuzzy logic controllers and uniformly applied for every robot. The simulation experiments verified that the proposed method has a positive effectiveness for the navigation problem.

Detecting Malicious Social Robots with Generative Adversarial Networks

  • Wu, Bin;Liu, Le;Dai, Zhengge;Wang, Xiujuan;Zheng, Kangfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5594-5615
    • /
    • 2019
  • Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.

Behavior Learning of Swarm Robot System using Bluetooth Network

  • Seo, Sang-Wook;Yang, Hyun-Chang;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권1호
    • /
    • pp.10-15
    • /
    • 2009
  • With the development of techniques, robots are getting smaller, and the number of robots needed for application is greater and greater. How to coordinate large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot Systems (SRS) is a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the SRS, a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, it is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots. And we will discuss how to construct and what kind of procedure to develop the communicating system for group behavior of the SRS under intelligent space.

포텐셜함수(Potential Function)를 이용한 자율주행로봇들간의 충돌예방을 위한 주행제어 알고리즘의 개발 (Development of Potential-Function Based Motion Control Algorithm for Collision Avoidance Between Multiple Mobile Robots)

  • 이병룡
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.107-115
    • /
    • 1998
  • A path planning using potential field method is very useful for the real-time navigation of mobile robots. However, the method needs high modeling cost to calculate the potential field because of complex preprocessing, and mobile robots may get stuck into local minima. In this paper, An efficient path planning algorithm for multiple mobile robots, based on the potential field method, was proposed. In the algorithm. the concepts of subgoals and obstacle priority were introduced. The subgoals can be used to escape local minima, or to design and change the paths of mobile robots in the work space. In obstacle priority, all the objects (obstacles and mobile robots) in the work space have their own priorities, and the object having lower priority should avoid the objects having higher priority than it has. In this paper, first, potential based path planning method was introduced, next an efficient collision-avoidance algorithm for multiple mobile robots, moving in the obstacle environment, was proposed by using subgoals and obstacle priority. Finally, the developed algorithm was demonstrated graphically to show the usefulness of the algorithm.

  • PDF

Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법 (Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink)

  • 강요환;이민철;김지언;윤성민;노치범
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

웹 로봇의 성능 평가를 위한 방법론 (A Methodology for Performance Evaluation of Web Robots)

  • 김광현;이준호
    • 정보처리학회논문지D
    • /
    • 제11D권3호
    • /
    • pp.563-570
    • /
    • 2004
  • 인터넷의 이용이 활발해짐에 따라 수많은 정보들이 점을 통하여 공개되고 있으며, 이용자는 점 검색 서비스를 이용하여 이러한 정보들에 과적으로 접근할 수 있다. 웹 검색 서비스의 구축을 위해서는 웹 로봇을 사용한 웹 문서 수집이 선행되어야 하며, 웹 문서들의 수가 급격히 증가하면서 양질의 웹 문서들을 효과적으로 수집할 수 있는 웹 로봇에 대한 필요성이 증가하고 있다. 본 연구에서는 웹 로봇들을 체계적으로 평가하기 위한 기준으로서 효율성, 지속성, 신선성, 포괄성, 정숙성, 유일성, 안전성을 제시하고, 이러한 평가 기준의 향상에 도움이 되는 기능들을 기술하였다. 또한, 본 연구에서는 네이버, 구글, 알타비스타 등에서 사용되고 있는 기존의 점 로봇들에 구현된 기능들을 조사하였다. 본 연구의 결과는 보다 효과적인 램 로봇의 개발에 기여할 것으로 기대된다.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

컬러 인식에 기반을 둔 스웜 로봇의 자기 조직화 연구 (Self-Organization of Swarm Robots Based on Color Recognition)

  • 정하민;황영기;김동헌
    • 한국지능시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.413-421
    • /
    • 2010
  • 본 논문에서는 로봇 축구용 카메라를 사용하는 기존 경로계획의 제한적인 사항을 극복하기 위해서 컬러 인식법에 의한 경로계획방법을 제시한다. 제안된 연구에서는 움직이는 목표물이 스웜로봇과 멀리 있어도 로봇의 직선 시야를 기반으로 동료 로봇을 따라가며, 움직이는 목표물을 추적 할 수 있다. 제안된 포텐셜 필드는 동료 로봇과의 충돌과 장애물과의 충돌을 피하면서 스웜 로봇들이 움직이는 목표물을 향하여 이동하게 한다. 결국, 스웜 로봇들 사이의 시각적 도움에 의해 최종 목표물에 모든 스웜 로봇들이 도달하게 된다. 제안된 방법은 움직이는 파티클, 즉 점 로봇이 아닌 논홀로노믹 제한이 있는 유니 사이클 로봇들을 대상으로 자기 조직화 방법을 제시하기 때문에 실제 하드웨어 적용시 유용하다.

산업용 로봇 셀 안전기능 제어시스템 성능수준 연구 (A Study on the Performance Level of Industrial Robot Cell Safety Function Control System)

  • 이중남;이동호
    • 한국안전학회지
    • /
    • 제38권3호
    • /
    • pp.1-9
    • /
    • 2023
  • Most existing industrial robots have fences installed around them to ensure safety. However, industrial sites are recently being transformed into workspaces shared by both robots and humans working cooperatively, wherein the robots are without security fencing owing to the development of sensor technology. However, in the last five years (2017-2021), 16 deaths have occurred due to robots at industrial sites, with the main cause of the accidents being workers approaching an industrial robot in operation and getting entangled with or colliding into the robot and its peripherals. To prevent such accidents, multilateral research is needed. To this end, this study analyzes the nonconforming contents of safety inspections for industrial robots and demonstrates the safety performance of the safety function control system implemented in an industrial robot cell. In addition, to ensure the fundamental safety of industrial robots, this study proposes the introduction of a safety certification system so that safety functions can be implemented in the design, manufacturing, and installation stages of the robots.