• Title/Summary/Keyword: Robotics Processing Automation

Search Result 79, Processing Time 0.024 seconds

Innovation Resistance, Satisfaction and Performance: Case of Robotic Process Automation (혁신저항, 만족 및 도입 성과에 대한 연구: 로보틱 프로세스 자동화 사례)

  • Yoon, Sungchul;Roh, Jonggeuk;Lee, Jungwoo
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.129-138
    • /
    • 2021
  • Many organizations are applying robotic process automation (RPA) to automate repetitive and rule based tasks to enhance the accuracy and efficiency of works. Some members are willing to join the projects hoping to eliminate annoying and meaningless tasks, but others are resisting this innovation fearing that they may lose their jobs. In this study, both positive and negative antecedents are posited to influence the performance in adopting RPA. The effects of relative advantage, compatibility, change management effect, innovation resistance and satisfaction, conclusively to performance improvement were examined via a survey of 109 employees involved in the 11 RPA projects in a manufacturing company, and the structural equation model analysis. The research considering the consumer characteristics of the innovation resistance model can be followed for the development of individualized change management strategy.

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

Development of Automatic Visual Inspection for the Defect of Compact Camera Module

  • Ko, Kuk-Won;Lee, Yu-Jin;Choi, Byung-Wook;Kim, Johng-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2414-2417
    • /
    • 2005
  • Compact Camera Module(CCM) is widely used in PDA, Celluar phone and PC web camera. With the greatly increasing use for mobile applications, there has been a considerable demands for high speed production of CCM. The major burden of production of CCM is assembly of lens module onto CCD or CMOS packaged circuit board. After module is assembled, the CCM is inspected. In this paper, we developed the image capture board for CCM and the imaging processing algorithm to inspect the defects in captured image of assembled CCMs. The performances of the developed inspection system and its algorithm are tested on samples of 10000 CCMs. Experimental results reveal that the proposed system can focus the lens of CCM within 5s and we can recognize various types of defect of CCM modules with good accuracy and high speed.

  • PDF

Real-time Message Network System for a Humanoid Robot

  • Ahn, Sang-Min;Gong, Jung-Sik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2296-2300
    • /
    • 2005
  • This paper deals with the real-time message network system by a CAN (controller area network) based on the real-time distributed control scheme to integrate actuators and sensors in a humanoid robot. In order to apply the real-time distributed processing for a humanoid robot, each control unit should have the real-time efficient control method, fast sensing method, fast calculation and real-time valid data exchange method. Moreover, the data from sensors and encoders must be transmitted to the higher level of control units in maximum time limit. This paper describes the real-time message network system design and the performance of the system.

  • PDF

Stochastic Optimal Control and Network Co-Design for Networked Control Systems

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.515-525
    • /
    • 2007
  • In this paper, we develop a co-design methodology of stochastic optimal controllers and network parameters that optimizes the overall quality of control (QoC) in networked control systems (NCSs). A new dynamic model for NCSs is provided. The relationship between the system stability and performance and the sampling frequency is investigated, and the analysis of co-design of control and network parameters is presented to determine the working range of the sampling frequency in an NCS. This optimal sampling frequency range is derived based on the system dynamics and the network characteristics such as data rate, time-delay upper bound, data-packet size, and device processing time. With the optimal sampling frequency, stochastic optimal controllers are designed to improve the overall QoC in an NCS. This co-design methodology is a useful rule of thumb to choose the network and control parameters for NCS implementation. The feasibility and effectiveness of this co-design methodology is verified experimentally by our NCS test bed, a ball magnetic-levitation (maglev) system.

Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier

  • Yoo, Sun-K.
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.601-605
    • /
    • 2007
  • In this paper, we propose a simple and relative electrode contact monitoring method. By exploiting the power line interference, which is regarded as one of the worst noise sources for bio-potential measurement, the relative difference in electrode impedance can be measured without a current or voltage source. Substantial benefits, including no extra circuit components, no degradation of the body potential driving circuit, and no electrical safety problem, can be achieved using this method. Furthermore, this method can be applied to multi-channel isolated bio-potential measurement systems and home health care devices under a steady measuring environment.

Development of Realtime Integrated Monitoring System in Product lines and Its Application

  • Kim, Sang-Bong;Kim, Suk-Yoel;Park, Soung-Jea;Lee, Young-Hwan;Kim, Soung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.126.4-126
    • /
    • 2001
  • Recently, researches on CIM in product lines of industrial plant are widely progressed, automation of working environment with modernization of product equipments is realized and also, installation of integrated control system based on computer is activated. Since the CIM system is basically developed by using computer, there are several complicated problems such as design problem of hardware interface between computer and many product machines with individual special functions, software development problem with realtime data process and multi communication functions for realtime data monitoring and control of product machines This paper shows the development results for a single board type of microcontroller and a monitoring software based on realtime processing database system ...

  • PDF

A Framework for Cognitive Agents

  • Petitt, Joshua D.;Braunl, Thomas
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.229-235
    • /
    • 2003
  • We designed a family of completely autonomous mobile robots with local intelligence. Each robot has a number of on-board sensors, including vision, and does not rely on global positioning systems The on-board embedded controller is sufficient to analyze several low-resolution color images per second. This enables our robots to perform several complex tasks such as navigation, map generation, or providing intelligent group behavior. Not being limited to playing the game of soccer and being completely autonomous, we are also looking at a number of other interesting scenarios. The robots can communicate with each other, e.g. for exchanging positions, information about objects or just the local states they are currently in (e.g. sharing their current objectives with other robots in the group). We are particularly interested in the differences between a behavior-based approach versus a traditional control algorithm at this still very low level of action.

Realization of Point-Listening Characteristics by Enclosed Microphone Array System with Optimal Complex Weighting

  • Ohyama, Shinji;Sasagawa, Yukifumi;Cao, Li;Kobayashi, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.266-269
    • /
    • 1999
  • An electronically Scannable microphone system is in the Planning stage. For this Purpose, a multiple microphone array with controllable delay is available. To achieve effective point-listening characteristics, we proposed an enclosed microphone array system with a complex weighting method. In this system, both the microphone arrangement and the value of the complex weighting are important. In this report, the construction of microphone array system and the signal-processing method are explained, and the calculation method for optimal complex weighting is also presented. A prototype experimental setup is designed and fabricated to verify the expected characteristics.

  • PDF

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.