• 제목/요약/키워드: Robotic camera

검색결과 93건 처리시간 0.027초

무인 지상 로봇의 실시간 원격 제어를 위한 3차원 시각화 시스템 (3D Information based Visualization System for Real-Time Teleoperation of Unmanned Ground Vehicles)

  • 장가람;배지훈;이동혁;박재한
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.220-229
    • /
    • 2018
  • In the midst of disaster, such as an earthquake or a nuclear radiation exposure area, there are huge risks to send human crews. Many robotic researchers have studied to send UGVs in order to replace human crews at dangerous environments. So far, two-dimensional camera information has been widely used for teleoperation of UGVs. Recently, three-dimensional information based teleoperations are attempted to compensate the limitations of camera information based teleoperation. In this paper, the 3D map information of indoor and outdoor environments reconstructed in real-time is utilized in the UGV teleoperation. Further, we apply the LTE communication technology to endure the stability of the teleoperation even under the deteriorate environment. The proposed teleoperation system is performed at explosive disposal missions and their feasibilities could be verified through completion of that missions using the UGV with the Explosive Ordnance Disposal (EOD) team of Busan Port Security Corporation.

강체 이동타겟 추적을 위한 일괄처리방법을 이용한 로봇비젼 제어기법 개발 (Development of Robot Vision Control Schemes based on Batch Method for Tracking of Moving Rigid Body Target)

  • 김재명;최철웅;장완식
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.161-172
    • /
    • 2018
  • This paper proposed the robot vision control method to track a moving rigid body target using the vision system model that can actively control camera parameters even if the relative position between the camera and the robot and the focal length and posture of the camera change. The proposed robotic vision control scheme uses a batch method that uses all the vision data acquired from each moving point of the robot. To process all acquired data, this robot vision control scheme is divided into two cases. One is to give an equal weight for all acquired data, the other is to give weighting for the recent data acquired near the target. Finally, using the two proposed robot vision control schemes, experiments were performed to estimate the positions of a moving rigid body target whose spatial positions are unknown but only the vision data values are known. The efficiency of each control scheme is evaluated by comparing the accuracy through the experimental results of each control scheme.

로봇의 3차원 작업을 위한 효율적 센서위치의 결정기법 : 스테레오 카메라를 중심으로 (A Technique to Efficiently Place Sensors for Three-Dimensional Robotic Manipulation : For the Case of Stereo Cameras)

  • 도용태
    • 센서학회지
    • /
    • 제8권1호
    • /
    • pp.80-88
    • /
    • 1999
  • 본 논문에서는 로봇의 3차원 작업을 위한 센서로 사용된 스테레오 카메라의 위치 결정 문제를 다룬다. 공통의 기준선상에 평행한 시선을 가지도록 설치된 스테레오 카메라의 모델이 주어진 후, 보정에 사용된 제어점들의 불확실성에 둔감하고 로봇의 반복정밀도를 고려한 오차 조건을 만족시킬 수 있도록 센서의 계측거리가 결정된다. 두 카메라간의 간격은 3차원 위치 오차와 스테레오 영상좌표 오차와의 관계를 고려하여 이들이 최소화될 수 있도록 결정하였다. 본 논문에서 제안한 방법은 기존의 기법들과는 달리 3차원의 문제를 피계측체의 모델링 과정이나 복잡한 제한조건 없이 접근함으로써 일반적이며, 모의실험을 통하여 유용함을 확인할 수 있었다.

  • PDF

이미지 비교 알고리즘을 이용한 물고기 로봇 위치 탐지 연구 (A Study of Detecting Fish Robot Position using the Comparing Image Data Algorithm)

  • 요겐드라 라오 무수누리;전우열;신규재
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1341-1344
    • /
    • 2015
  • In this paper, the designed fish robot is researched and developed for aquarium underwater robot. This paper is a study on how the outside technology merely to find the location of fish robots without specific sensor or internal devices. This model is designed to detect the position of the Robotic Fish in the Mat lab and Simulink. This intends to recognize the shape of the tank via a video device such as a camera or camcorder using an image processing technique to identify the location of the robotic fishes. Here, we are applied the two methods, one is Hom - Schunk Method and second one is newly proposed method that is the comparing image data algorithm. The Horn - Schunck Method is used to obtain the velocity for each pixel in the image and the comparing image data algorithm is proposed to obtain the position with comparing two video frames and assumes a constant velocity in each video frame.

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.

모바일 로봇의 목표물 추적을 위한 이미지 궤환 제어 (A Image Feedback control of Mobile Robot for Target Tracking)

  • 황원준;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.90-98
    • /
    • 2015
  • This research propose with image-based visual a new approach to design a feedback control of mobile robot. because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using camera, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is inmage-based visual feedback. Recently, image based visual feedback is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. in case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual feedback method that can reduce the curved trajectory of mobile robot in th cartesian space.

등온선 반경을 이용한 공정변수 모니터링에 관한 연구 (A Study on Monitoring for Process Parameters Using Isotherm Radii)

  • 김일수;전광석;손준식;서주환;김학형;심지연
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.37-42
    • /
    • 2006
  • The robotic arc welding is widely employed in the fabrication industry fer increasing productivity and enhancing product quality by its high processing speed, accuracy and repeatability. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. In this paper, the possibilities of the Infrared camera in sensing and control of the bead geometry in the automated welding process are presented. Both bead width and thermal images from infrared thermography are effected by process parameters. Bead width and isotherm radii can be expressed in terms of process parameters(welding current and welding speed) using mathematical equations obtained by empirical analysis using infrared camera. A linear relationship exists between the isothermal radii producted during the welding process and bead width.

A Human-Robot Interface Using Eye-Gaze Tracking System for People with Motor Disabilities

  • Kim, Do-Hyoung;Kim, Jae-Hean;Yoo, Dong-Hyun;Lee, Young-Jin;Chung, Myung-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.229-235
    • /
    • 2001
  • Recently, service area has been emerging field f robotic applications. Even though assistant robots play an important role for the disabled and the elderly, they still suffer from operating the robots using conventional interface devices such as joysticks or keyboards. In this paper we propose an efficient computer interface using real-time eye-gaze tracking system. The inputs to the proposed system are images taken by a camera and data from a magnetic sensor. The measured data is sufficient to describe the eye and head movement because the camera and the receiver of a magnetic sensor are stationary with respect to the head. So the proposed system can obtain the eye-gaze direction in spite of head movement as long as the distance between the system and the transmitter of a magnetic position sensor is within 2m. Experimental results show the validity of the proposed system in practical aspect and also verify the feasibility of the system as a new computer interface for the disabled.

  • PDF

3차원 비전 기술을 이용한 라벨부착 소형 물체의 정밀 자세 측정 (Accurate Pose Measurement of Label-attached Small Objects Using a 3D Vision Technique)

  • 김응수;김계경;;박순용
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.839-846
    • /
    • 2016
  • Bin picking is a task of picking a small object from a bin. For accurate bin picking, the 3D pose information, position, and orientation of a small object is required because the object is mixed with other objects of the same type in the bin. Using this 3D pose information, a robotic gripper can pick an object using exact distance and orientation measurements. In this paper, we propose a 3D vision technique for accurate measurement of 3D position and orientation of small objects, on which a paper label is stuck to the surface. We use a maximally stable extremal regions (MSERs) algorithm to detect the label areas in a left bin image acquired from a stereo camera. In each label area, image features are detected and their correlation with a right image is determined by a stereo vision technique. Then, the 3D position and orientation of the objects are measured accurately using a transformation from the camera coordinate system to the new label coordinate system. For stable measurement during a bin picking task, the pose information is filtered by averaging at fixed time intervals. Our experimental results indicate that the proposed technique yields pose accuracy between 0.4~0.5mm in positional measurements and $0.2-0.6^{\circ}$ in angle measurements.

줌 카메라를 통해 획득된 거리별 얼굴 영상을 이용한 원거리 얼굴 인식 기술 (The Long Distance Face Recognition using Multiple Distance Face Images Acquired from a Zoom Camera)

  • 문해민;반성범
    • 정보보호학회논문지
    • /
    • 제24권6호
    • /
    • pp.1139-1145
    • /
    • 2014
  • 지능형 서비스를 제공하는 로봇에서 특정 사람을 인지하거나 구별하는 인식 기술은 매우 중요하다. 기존 단일 거리 얼굴 영상을 학습으로 사용한 얼굴 인식 알고리즘은 원거리로 갈수록 얼굴 인식률이 떨어지는 문제점이 있다. 실제 거리별 얼굴 영상을 이용한 방법은 얼굴 인식률은 향상되지만, 사용자 협조가 요구되는 단점이 있다. 본 논문에서는 줌카메라를 통해 거리별 얼굴 영상을 획득하여 학습으로 사용하는 LDA 기반 원거리 얼굴 인식을 제안한다. 제안하는 방법은 기존 단일거리 얼굴 영상을 학습으로 이용한 방법에 비해 7.8% 향상된 성능을 보였고, 거리별 얼굴 영상을 학습으로 이용한 방법과 비교했을 때 8.0% 저하된 성능을 보였다. 그러나 거리별 얼굴 영상을 취득하기 위해 추가적인 시간과 사용자 협조가 요구되지 않는 장점이 있다.