• 제목/요약/키워드: Robot-Finger

검색결과 113건 처리시간 0.029초

DEVELOPMENT OF AGRICULTURAL HYDRAULIC ROBOT(Part I) - Dynamic Characteristics and System Identification -

  • Iida, Michihisa;Umeda, Mikio;Namikawa, Kiyoshi
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.820-829
    • /
    • 1993
  • We have developed an agricultural hydraulic robot to operate in the agricultural field. Using the robot, automatic harvesting experiments of watermelon were done. The results are as follows. First, the gripper should be modified its finger. Second, the manipulator and the gripper should be known precisely about dynamic characteristics of them in order to control adequately. Therefore, a new gripper was manufactured on trial by modifying its finger, and in order to known dynamic characteristics of the manipulator and the new gripper, the system identification was carried out with experiments.

  • PDF

SCARA robot를 위한 4자유도 end-effector 개발 (Four degrees of freedom robot gripper for assembly robots)

  • 오세훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.511-516
    • /
    • 1991
  • A new end-effector has been devised and the problems resulted from using it with SCARA robots are discussed. The end effector has two modules: one composed of two ultrasonic motors and two encoders for controlling each finger, and the other module composed of two ultrasonic motors and two encoders for controlling the wrist. The wrist module adds two degrees of freedom to the SCARA type robot, which generally has four degrees of freedom. With independent finger actuation and touch sensors, the gripper under computer control can feedback information about part size and part presence. Ultrasonic motors with high torque and slow motion characteristics are used. The principle of ultrasonic motors is explained and the servo characteristics of ultrasonic motors are studied. They are controlled by the general motion controller (Hewlett Packard HCTL-1000) which is linked to an IBM-PC AT.

  • PDF

로봇 손가락용 소형 6축 힘/모멘트센서 개발 (Development of a small 6-axis force/moment sensor for robot's finger)

  • 김갑순;이상호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.490-493
    • /
    • 2003
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures forces Fx. Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction. and perform the control using the measured forces and moments. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My. Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed, and the result shows that interference errors or the developed sensor are less than 3%. Thus, the developed small 6-axis force/moment sensor may be used for robot's gripper.

  • PDF

로봇 손가락용 소형 6축 힘/모멘트센서 개발 (Development of a Small 6-axis Force/Moment Sensor for Robot′s Finger)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.51-58
    • /
    • 2004
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures farces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction, and perform the force control using the measured forces and moments. Also, it should detect the moments Mx (x-direction moment), My and Mz to accurately perceive the position of the object in the grippers. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test for the developed sensor was performed, and the result shows that intereference errors of the developed sensor are less than 4.23%. Thus, the developed small 6-axis force/moment sensor may be used a robot's gripper.

손가락 인식을 기반으로 한 로봇청소기 제어기술 (Control Technology Based on the Finger Recognition of Robot Cleaners)

  • 유향준;목승수;김준서;백지아;고윤석
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.139-146
    • /
    • 2020
  • 일반 로봇 청소기의 단점은 정해진 루트에서만 동작하기 때문에 정해진 루트를 벗어난 장소에 대한 청소가 불가능하다. 따라서 본 연구에서는 기존 청소기의 단점을 보완하기 위해 손가락 인식 기술을 기반으로 정해진 루트 이외의 장소를 탐색하기 위한 방향제어 방법론을 연구하였다. 주제어장치로는 라즈베리파이를 사용하였으며 Open CV 프로그램을 이용하여 손가락 개수를 인식할 수 있도록 하였다. 제안된 방법론의 유효성을 검증하기 위해서 파이선 언어를 이용하여 손가락 인식 알고리즘을 구현하였으며, 로지텍 C922를 사용한 결과 90cm에서는 100%, 110cm에서는 70%의 성공률을 확인할 수 있었다.

로봇 핸드핑거의 파지제어에 관한 연구 (A Study on Grasping Control of Robotic Hand Fingers)

  • 심병균;정양근;박인만;황원준;강언욱;한성현
    • 한국산업융합학회 논문집
    • /
    • 제16권4호
    • /
    • pp.141-145
    • /
    • 2013
  • This paper is the development of industrial robotic hand system and the design methods of industrial robot hand that can mimic human fingers motion. In order to overcome problems incurred during the reduction of the mobility, this study focuses on analyzing human hand structure and finger movements from an anatomical point of view. As a result, distinctive features that improve the discovered stability in constraints for range of motion in the fingers is reflected in this design concept. A 4-bar Linkage is used in robot finger structure. Lastly, there were experiments to inspect the developed robot hands performance. The developed robot hand has many potential applications and can be in many different fields.

Development of POSTEC HAND-V Index Finger Module

  • Lee, Ju-Hyoung;Youm, Youn-Gil;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2022-2026
    • /
    • 2003
  • We define that the end effector is the device which interact environment or objects with contact to execute tasks. Up to now, many researchers developed anthropomorphic robotic hands as end effectors. In this paper, we will discuss a problem on the development of a human-scale and motor-driven anthropomorphic robot hand. In this paper, design concept, actuator and transmission, kinematic design and sensing device are presented. By imitating the physiology of human hands, we devised new metacarpalphalangeal joint and interphalangeal joint suitable for human-size robot hands

  • PDF

임의 물체에 대한 최적 3차원 Grasp Planning (Optimal 3D Grasp Planning for unknown objects)

  • 이현기;최상균;이상릉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.462-465
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has analyzed mainly with either unknown objects 2D by vision sensor or unknown objects, cylindrical or hexahedral objects, 3D. Extending the previous work, in this paper we propose an algorithm to analyze grasp of unknown objects 3D by vision sensor. This is archived by two steps. The first step is to make a 3D geometrical model of unknown objects by stereo matching which is a kind of 3D computer vision technique. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand because it has the characteristic of multi-finger hand and is easy to modeling. To find the optimal grasping points, genetic algorithm is used and objective function minimizing admissible farce of finger tip applied to the object is formulated. The algorithm is verified by computer simulation by which an optimal grasping points of known objects with different angles are checked.

  • PDF

3차원 영상처리 기술을 이용한 Grasp planning의 최적화 (The Optimal Grasp Planning by Using a 3-D Computer Vision Technique)

  • 이현기;김성환;최상균;이상룡
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.54-64
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has mainly analyzed with either unknown objects 2-dimensionally by vision sensor or known objects, such as cylindrical objects, 3-dimensionally. As extending the previous work, in this study we propose an algorithm to analyze grasp of unknown objects 3-dimensionally by using vision sensor. This is archived by two steps. The first step is to make a 3-dimensional geometrical model for unknown objects by using stereo matching. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand which has the characteristic of multi-finger hand and is easy to model. To find the optimal grasping points, genetic algorithm is employed and objective function minimizes the admissible force of finger tip applied to the objects. The algorithm is verified by computer simulation by which optimal grasping points of known objects with different angle are checked.