• Title/Summary/Keyword: Robot guide

Search Result 186, Processing Time 0.062 seconds

A Directional Perception System based on Human Detection for Public Guide Robots (공공 안내 로봇을 위한 인체 검출 기반의 방향성 감지 시스템)

  • Doh, Tae-Yong;Baek, Jeong-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.481-488
    • /
    • 2010
  • Most public guide robots installed in public spots such as exhibition halls and lobbies of department store etc., have poor capability to distinguish the users who require services. As to provide suitable services, public guide robots should have a human detection system that makes it possible to evaluate intention of customers from their movement direction. In this paper, a DPS (Directional Perception System) is realized based on face detection technology. In particular, to catch human movement efficiently and reduce computational time, human detection technology using face rectangle, which is obtained from the human face, is developed. DPS determines which customer needs services of public guide robots by investigating the size and direction of face rectangle. If DPS is adapted, guide service will be provided with more satisfaction and reliability, and power efficiency also can be added up because public guide robots provide services only for the users who expresses their intentions of wanting services explicitly. Finally, through several experiments, the feasibility of the proposed DPS is verified.

Development of the Medical Support Service Robot Using Ergonomic Design

  • Cho, Young-Chul;Jang, Jae-Ho;Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2660-2664
    • /
    • 2003
  • In this study, the concept of autonomous mobility is applied to a medical service robot. The aim of the development of the service robot is for the elderly assisting walking rehabilitation. This study aims that the service robot design parameter is proposed in ergonomic view. The walking assistant path pattern is derived from analyzing the elderly gait analysis. A lever is installed in the AMR in order to measure the pulling force and the leading force of the elderly. A lever mechanism is applied for walking assistant service of the AMR. This lever is designed for measuring the leading force of the elderly. The elderly adjusts the velocity of the robot by applying force to the lever. The action scope and the service mechanism of the robot are developed for considering and analyzing the elderly action patterns. The ergonomic design parameters, that is, dimensions, action scope and working space are determined based on the elderly moving scope. The gait information is acquired by measuring the guide lever force by load cells and working pattern by the electromyography signal.

  • PDF

Guidance of Mobile Robot for Inspection of Pipe (파이프 내부검사를 위한 이동로봇의 유도방법)

  • 정규원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.480-485
    • /
    • 2002
  • The purpose of this paper is the development of guidance algorithm for a mobile robot which is used to acquire the position and state information of the pipe defects such as crack, damage and through hole. The data used for the algorithm is the range data obtained by the range sensor which is based on an optical triangulation method. The sensor, which consists of a laser slit beam and a CCD camera, measures the 3D profile of the pipe's inner surface. After setting the range sensor on the robot, the robot is put into a pipe. While the camera and the LSB sensor part is rotated about the robot axis, a laser slit beam (LSB) is projected onto the inner surface of the pipe and a CCD camera captures the image. From the images the range data is obtained with respect to the sensor coordinate through a series of image processing and applying the sensor matrix. After the data is transformed into the robot coordinate, the position and orientation of the robot should be obtained in order to guide the robot. In addition, analyzing the data, 3D shape of the pipe is constructed and the numerical data for the defects of the pipe can be found. These data will be used for pipe maintenance and service.

  • PDF

Reasonable Hardware Design Methods for 2-Wheeled Mobile Robots : Based on Segway Type Mobile Robots (2륜 이동로봇의 합리적인 하드웨어 설계 노하우 : 세그웨이를 중심으로)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.109-111
    • /
    • 2009
  • In this paper, we discuss how to design 2-wheeled mobile robot hard wares as reasonable and practical as possible. A segway type mobile robot consists of 2 wheels only, placed in parallel rather than horizon. 2-wheeled mobile robots make you overcome high cost and time consuming maintenance procedures of the robot by reducing the number of robot hardwares. The most challenging thing in a 2-wheeled mobile robot that has many more valid virtues than the traditional mobile robots is to make it balance itself whenever it stands still or goes forward. But balancing itself is not an easy matter and there are many researches and experiments on this issue. When researchers test theories on 2-wheeled mobile robots to improve its self balancing performance, they should consider how to design hard wares of that mobile robot. No matter how great those new theories are, if a testbed for those theories is not suitable, performance output would be poor and meaningless. In this point of view, to design a proper 2-wheeled mobile robot as a testbed is a very important issue with development of new theories. So we define 4 guide lines to design segway type mobile robots reasonably; about motor, battery, and MCU selection and shock-proof design with robust motor setting.

  • PDF

Teleoperation System of a Mobile Robot over the Internet (인터넷을 이용한 이동로봇의 원격 운용 시스템)

  • Park, Taehyun;Gang, Geun-Taek;Lee, Wonchang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.270-274
    • /
    • 2002
  • This paper presents a teleoperation system that combines computer network and an autonomous mobile robot. We control remotely an autonomous mobile robot with vision over the Internet to guide it under unknown environments in the real time. The main feature of this system is that local operators need a web browser and a computer connected to the communication network and so they can command the robot in a remote location through the home page. The hardware architecture of this system consists of an autonomous mobile robot, workstation, and local computers. The software architecture of this system includes the client part for the user interface and robot control as well as the server part for communication between users and robot. The server and client systems are developed using Java language which is suitable to internet application and supports multi-platform. Furthermore. this system offers an image compression method using JPEG concept which reduces large time delay that occurs in network during image transmission.

Visual Navigation by Neural Network Learning (신경망 학습에 의한 영상처리 네비게이션)

  • Shin, Suk-Young;Hoon Kang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.263-266
    • /
    • 2001
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide line or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.

  • PDF

Development of An Interactive Tour-Guide Robot in Dynamic Environments

  • 김건희;정우진;김경록;김문상;한상목;신홍식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.20-20
    • /
    • 2004
  • 최근 들어서 로봇 기술이 공공장소에서 서비스 제공을 위한 목적으로 이용되기 위하여 다양한 시도들이 이루어지고 있다. 현재 로봇 기술 연구에 있어서 큰 두 가지 이슈엔 로봇과 사람 사이의 인터렉션과 동적 환경에서의 네비게이션 문제가 있고, 이에 밀접하게 연관된 안내 로봇 시스템 연구에 많은 연구자들이 관심을 가지고 연구를 수행하고 있다 KIST(Korea Institute of Science and Technology)의 지능로봇연구센터에서도 이러한 맥락에서 2004년 8월에 대전 국립중앙박물관에 상시 운영을 목표로 하는 안내 로봇 "지니"를 개발 하고 있다.(중략)

  • PDF

Vision Navigation System by Autonomous Mobile Robot

  • Shin S.Y.;Lee, J.H.;Kang H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.146.3-146
    • /
    • 2001
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads and open area without any specific mark such as painted guide tine or tape. In this method, Robot navigates with visual sensors, which uses visual information to navigate itself along the road. An Artificial Neural Network System was used to decide where to move. It is designed with USB web camera as visual sensor.

  • PDF

Intelligent Navigation of a Mobile Robot in Dynamic Environments (동적환경에서 이동로봇의 지능적 운행)

  • Heo, Hwa-Ra;Park, Jae-Han;Park, Seong-Hyeon;Park, Jin-U;Lee, Jang-Myeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.16-28
    • /
    • 2000
  • In this paper, we propose a navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments using an ultrasonic sensor. Instead of using "sensor fusion"method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion"method is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we peformed simulations in PC as well as real experiments with ZIRO. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

  • PDF

The Evaluation Criteria of Learning Abilities for Personal Robots and It's Application to a Cleaning Robot (개인용 로봇을 위한 학습능력 평가기준 및 청소로봇에 대한 적용 사례)

  • Kim Yong Jun;Kim Jin-Oh;Yi Keon Young
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.300-306
    • /
    • 2005
  • In this paper we present a guideline to evaluate how easy the use of personal robots is and how good their learning abilities are, based on the analysis of their built-in commands, user interfaces, and intelligences. Recently, we are living with robots that can be able to do lots of roles; cleaning, security, pets and education in real life. They can be classified as home robots, guide robots, service robots, robot pets, and so on. There we, however, no standards to evaluate their abilities, so it is not easy to select an appropriate robot when a user wants to buy it. Thus, we present, as a guideline that can be a standard for the evaluation of the personal robots, the standards by means of analyzing existing personal robots and results of the recent research works. We will, also, demonstrate how to apply the evaluation method to the cleaning robot as an example.