• Title/Summary/Keyword: Robot frame

Search Result 166, Processing Time 0.02 seconds

Facial Expression Transformation and Drawing Rule Generation for the Drawing Robot (초상화로봇을 위한 표정 변환 및 드로잉규칙 생성)

  • 김문상;민선규;최창석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2349-2357
    • /
    • 1994
  • This paper presents a facial expression transformation algorithm and drawing rule generation algolithm for a portrait drawing robot which was developed for the '93 Taejeon EXPO. The developed algorithm was mainly focused on the robust automatic generation of robot programs with the consideration that the drawing robot should work without any limitation of the age, sex or race for the persons. In order to give more demonstratin effects, the facial expression change of the pictured person was performed.

A control system for wheel-driven mobile robot (휠구동방식의 이동로봇을 위한 제어시스템 설계)

  • 고경철;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Real-time mobile robot controllers usually have been designed with an emphasis on control theory ignoring the importance of system integration. This paper demonstrates that useful mobile robots require a real time controller with a wide range of capabilities in addition to control theory. These capabilities include: path-planning, position estimation, path tracking control and wheel control. An architectural framework supporting these capabilities has been designed and implemented. Using this frame work, individual modules such as a path planner, a path tracking controller, position estimators, wheel controllers and other cruical elements have been successfully integrated into the control system for the LCAR robot which was developed as a proto-type mobile robot in our laboratory. The context of the research, the architecture, its implementation and performance results from experiments are discussed.

  • PDF

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

A Programming System for SCARA-Type Robots (SCARA형 로봇트를 위한 프로그래밍 시스템)

  • Kim, S.K.;Shin, Y.S.;Lim, J.;Bien, Z.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.275-278
    • /
    • 1987
  • In this paper, a programming system for SCARA-type robots is designed, consisting of robot language, computational facilities and programming tools for handling interconnection environments. In designing the robot language, CLRC(C Library for Robot Control) is introduced, using the general-purpose language 'C' as base programming language. Also the motion primitives for Continuous Path control as well as Point-To-Point motion arc included. By means of frame and homogeneous transformations the system is capable of applying the SCARA-type robot efficiently and easily for any given task.

  • PDF

Gantry Robot with Extended Workspace for Pavement Sign Painting Operations

  • Hong Daehie;Lee Woo-Chang;Chu Baeksuk;Kim Tae-Hyung;Choi Woo Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1268-1279
    • /
    • 2005
  • The current method for pavement sign marking operations is labor-intensive and very dangerous due to the exposure of workers to passing traffic. It also requires blocking traffic for a long period of time resulting serious traffic jam. This paper deals with the development of a robotic system for automating the pavement sign painting operations. The robotic system consists of gantry frame equipped with transverse drive rail and automatic paint spray system. The workspace of the gantry robot is extended to one-lane width with the transverse rail system. This research also includes the development of font data structures that contain the shape information of pavement signs, such as Korean letters, English letters and symbols. The robot path is generated with this font data through the procedures of scaling up/down and partitioning the signs to be painted depending on the workspace size.

The Design of Fuzzy-Neural Controller for Velocity and Azimuth Control of a Mobile Robot (이동형 로보트의 속도 및 방향제어를 위한 퍼지-신경제어기 설계)

  • Han, S.H.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • In this paper, we propose a new fuzzy-neural network control scheme for the speed and azimuth control of a mobile robot. The proposed control scheme uses a gaussian function as a unit function in the fuzzy-neural network, and back propagation algorithm to train the fuzzy-neural network controller in the frame-work of the specialized learning architecture. It is proposed a learning controller consisting of two fuzzy-neural networks based on independent reasoning and a connection net woth fixed weights to simply the fuzzy-neural network. The effectiveness of the proposed controller is illustrated by performing the computer simulation for a circular trajectory tracking of a mobile robot driven by two independent wheels.

  • PDF

Computer aided design system for robotic painting line (동장공정의 로보틱자동화를 위한 설계지원 시스템)

  • Suh, Suk-Hwan;Cho, Jung-Hoon;Kang, Dae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.171-179
    • /
    • 1994
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implemen- tation details (such as robot selection, accessory design, and spatial layout) together with operation details, the computer aided design and analysis method should be sought. However, conventional robotic design systems and off-line programming systems cannot accommodate these inquiries in a unified fashion. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL (Simulation Package for Robotic Painting Line) users can design the painting objects (via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workpace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS).

  • PDF

A Study for the 3-Dimensional Measurement System using Laser Slit-Ray (레이저 슬릿광을 이용한 3차원 계측 장치에 관한 연구)

  • 김선일;정재문;양윤모
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.2
    • /
    • pp.27-39
    • /
    • 1992
  • 3 Dimensional measurement system using camera and laser slit-ray is studied. Precise calibration technique in this system is suggested. Calibration is accomplished with calibration die, calibration block and robot. For obtaining calibration parameters, the equations are solved using least square error method from a great many calibration points to reduce measuring error. Continuous measurement is possible for the object which is larger than one frame of camera. The efficiency and usability are proved by applying to the tire profile measuring system which measures tire profile using robot and this system.

  • PDF

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

Collision-Free Motion Planning of a Robot Using Free Arc concept (프리아크 개념을 이용한 로봇의 충돌회피 동작 계획)

  • Lee, Seok-Won;Nam, Yun-Seok;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF