• Title/Summary/Keyword: Robot Steering System

Search Result 70, Processing Time 0.033 seconds

An Interactive Robotic Cane

  • Yoon, Joongsun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.5-12
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of human and robots is explored. Based on this interactive technology paradigm, a robotic cane is proposed for blind or visually impaired travelers to navigate safely and quickly through obstacles and other hazards faced by blind pedestrians. The proposed robotic cane, "RoJi,” consists of a long handle with a button-operated interface and a sensor head unit that is attached at the distal end of the handle. A series of sensors, mounted on the sensor head unit, detect obstacles and steer the device around them. The user feels the steering command as a very noticeable physical force through the handle and is able to follow the path of the robotic cane easily and without any conscious effort. The issues discussed include methodologies for human-robot interactions, design issues of an interactive robotic cane, and hardware requirements for efficient human-robot interactions.ions.

Development of a wall climbing robot with vacuum caterpillar wheel system (흡착 캐터필러 시스템을 이용한 수직평면 등반로봇 기구부의 개발)

  • Kim Hwang;Kim Dong-Mok;Yang Ho-Joon;Lee Kyou-Hee;Seo Kun-Chan;Chang Do-Young;Kim Jong-Won
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.55-56
    • /
    • 2006
  • This paper describes a new concept of the robot that can climb on the vertical plane. The engineering design problem of the main structure is presented and the experimental results regarding a new mechanism of climbing on the vertical wall are discussed. The locomotive motion of the robot is realized by using a series chain of two caterpillar wheels on which 24-suction pads are installed. White each caterpillar wheel rotates on the vertical plane surface, the vacuum pads are activated in sequence based on the sequential opening by specially designed mechanical valves. The detail design feature of the valve is also described in this paper. The overall size of the robot is around 460 mm in width and length, respectively, and 200 mm in height. Its mass is slightly over 14 kg. The main mechanical structure of the robot consists of driving motors, vacuum caterpillar system, steering part, vacuum pump and battery. The performance of the robot is verified on the vertical wall.

  • PDF

A study on stand-alone autonomous mobile robot using mono camera (단일 카메라를 사용한 독립형 자율이동로봇 개발)

  • 정성보;이경복;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • This paper introduces a vision based autonomous mini mobile robot that is an approach to produce real autonomous vehicle. Previous autonomous vehicles are dependent on PC, because of complexity of designing hardware, difficulty of installation and abundant calculations. In this paper, we present an autonomous motile robot system that has abilities of accurate steering, quick movement in high speed and intelligent recognition as a stand-alone system using a mono camera. The proposed system has been implemented on mini track of which width is 25~30cm, and length is about 200cm. Test robot can run at average 32.9km/h speed on straight lane and average 22.3km/h speed on curved lane with 30~40m radius. This system provides a model of autonomous mobile robot adapted a lane recognition algorithm in odor to make real autonomous vehicle easily.

  • PDF

A Study on Implementation of Service Robot Platform for Mess-Cleanup (정리정돈용 서비스 로봇 플랫폼의 구현 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.

Efficient Localization of a Mobile Robot Using Spatial and Temporal Information from Passive RFID Environment (수동 RFID 환경에서의 공간/시간 정보를 이용한 이동로봇의 효율적 위치 추정 기법)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.2
    • /
    • pp.164-172
    • /
    • 2008
  • This paper presents the efficient localization of a mobile robot traveling on the floor with tags installed, using the spatial and temporal information acquired from passive RFID environment. Compared to previous research, the proposed localization method can reduce the position estimation error and also cut down the initial cost tag installation cost. Basically, it is assumed that a mobile robot is traveling over a series of straight line segments, each at a certain constant velocity, and that the number of tags sensed by a mobile robot at each sampling instant is at most one. First, the velocity and position estimation of a mobile robot starting from a known position, which is valid for all segments except the first one. Second, for the first segment in which the starting position is unknown, the velocity and position estimation is made possible by enforcing a mobile robot to traverse at least two tags at a constant velocity with the steering angle unchanged. Third, through experiments using our passive RFID localization system, the validity and performance of the mobile robot localization proposed in this paper is demonstrated.

  • PDF

Autonomous Navigation Control of Mobile Robot using fuzzy (퍼지를 이용한 이동로봇의 자율주행제어)

  • 김은석;주기세
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.340-347
    • /
    • 1999
  • Recently, the progress of industrialization has been taken concern of material handling automation. So far, the conveyor belt has been popular for material handling. However, this system has many disadvantages such as the space, cost, In this paper, a new navigation algorithm using fuzzy is introduced. The mobile robot follows a line installed on the roads. These informations are inputted with three approximate sensors. These obtained informations are analyzed with fuzzy technique for autonomous steering. Therefore, unlike existing systems, high reliability is guaranteed under bad environment conditions. The installation and maintenance of a line is easily made at lower cost. The use of the mobile robot can be extended to materials handing purposes in manufacturing, hospital, inter-of fire documents deliveries.

  • PDF

Swimming Microrobot Actuated by External Magnetic Field (전자기 구동 유영 마이크로로봇)

  • Byun, Dong-Hak;Kim, Jun-Young;Baek, Seung-Man;Choi, Hyun-Chul;Park, Jong-Oh;Park, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1300-1305
    • /
    • 2009
  • The various electromagnetic based actuation(EMA) methods have been proposed for actuating microrobot. The advantage of EMA is that it can provide wireless driving to microrobot. In this reason a lot of researchers have been focusing on the EMA driven microrobot. This paper proposed a swimming microrobot driven by external alternating magnet field which is generated by two pairs of Helmholtz coils. The microrobot has a fish-like shape and consists of a buoyant robot body, a permanent magnet, and a fin. The fin is directly linked to the permanent magnet and the magnet is swung by the alternating magnet field, which makes the propulsion and steering power of the robot. In this paper, firstly, we designed the locomotive mechanism of the microrobot boy EMA. Secondly, we set up the control system. Finally, we demonstrated the swimming robot and evaluated the performance of the microrobot by the experiments.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking and Obstacle Avoidance

  • Kim, Sang-Gyum;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.932-937
    • /
    • 2003
  • In this paper, we will explain about the unmanned vehicle control and modeling for combined obstacle avoidance and lane tracking. First, obstacle avoidance is considered as one of the important technologies in the unmanned vehicle. It is consisted by two parts: the first part includes the longitudinal control system for the acceleration and deceleration and the second part is the lateral control system for the steering control. Each system uses to the obstacle avoidance during the vehicle moving. Therefore, we propose the method of vehicle control, modeling and obstacle avoidance. Second, we describe a method of lane tracking by means of vision system. It is important in the unmanned vehicle and mobile robot system. In this paper, we deal with lane tracking and image processing method and it is including lane detection method, image processing algorithm and filtering method.

  • PDF

Movement characteristics of pneumatic actuators for the semi-autonomous colonoscopic system (자율이동 대장 내시경을 위한 공압구동기의 이동 특성)

  • Kim, Byung-Kyu;Lee, Jin-Hee;Park, Ji-Sang;Lim, Young-Mo;Park, Jong-Oh;Kim, Soo-Hyun;Hong, Yeh-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.295-300
    • /
    • 2001
  • In recent years, as changing the habit of eating, the pathology in the colon grows up annually. For that reason, the colonoscopy is generalized. But it requires much time to acquire a dexterous skill to perform an operation. And the procedure is painful to the patient. Therefore, biomedical and robotic researchers are developing a locomotive colonoscope that can travel safely in colon. In this paper, we propose a novel design and concept of semi-autonomous colonoscope and two actuators for the micro robot. The micro robot comprises camera and LED for diagnosis, steering system to pass through the loop, pneumatic actuator and bow-shaped flexible supporters to control a contact force and to keep the space between colon wall and the actuator. For actuating mechanism, we suggest two models. One is based on the reaction force, and the other is impact force. In order to validate the concept and the performance of the actuators, we carried out the preliminary experiments in rigid pipes.

  • PDF

Development of Autonomous Driving Electric Vehicle for Logistics with a Robotic Arm (로봇팔을 지닌 물류용 자율주행 전기차 플랫폼 개발)

  • Eui-Jung Jung;Sung Ho Park;Kwang Woo Jeon;Hyunseok Shin;Yunyong Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.93-98
    • /
    • 2023
  • In this paper, the development of an autonomous electric vehicle for logistics with a robotic arm is introduced. The manual driving electric vehicle was converted into an electric vehicle platform capable of autonomous driving. For autonomous driving, an encoder is installed on the driving wheels, and an electronic power steering system is applied for automatic steering. The electric vehicle is equipped with a lidar sensor, a depth camera, and an ultrasonic sensor to recognize the surrounding environment, create a map, and recognize the vehicle location. The odometry was calculated using the bicycle motion model, and the map was created using the SLAM algorithm. To estimate the location of the platform based on the generated map, AMCL algorithm using Lidar was applied. A user interface was developed to create and modify a waypoint in order to move a predetermined place according to the logistics process. An A-star-based global path was generated to move to the destination, and a DWA-based local path was generated to trace the global path. The autonomous electric vehicle developed in this paper was tested and its utility was verified in a warehouse.