• Title/Summary/Keyword: Robot Roll

Search Result 74, Processing Time 0.027 seconds

A Controller Design and Performance Evaluation for 6 DOF Mobile Robot using IMU (IMU를 이용한 6자유도 모바일 로봇의 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin-gu;hwang, zai-moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.249-252
    • /
    • 2014
  • 본 논문에서는 IMU를 이용한 6자유도 모바일 로봇을 설계하고 성능을 평가해 보았다. IMU를 이용하여 로봇의 Roll과 Pitch 각을 측정하여 모바일 로봇의 이동경로 경사각을 측정하여 지면이 수평 일 때 모바일 로봇의 6바퀴 모두 항상 지면과 닿아 있는 상태를 유지한다. 또한 오르막과 내리막일 경우 로봇의 동역학에 의한 최소한의 에너지를 유지하여 이동이 가능하도록 하기위한 로봇의 제어기를 설계하고 그 성능을 평가해 보았다.

  • PDF

Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor (자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어)

  • Jang, Jae-Seok;Kim, Min-Soo;Kim, Seong-Jin;Lee, Cheol-Keun;Park, Hyoung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1205-1212
    • /
    • 2021
  • Robots that can actually help people a lot by dealing with dangerous tasks that are difficult for people to do, such as disaster situations, lifesaving, handling dangerous goods, and reconnaissance of dangerous areas, continue to become an issue. Therefore, in this paper, we intend to implement a mobile robot arm that can implement a human motion will on the robot arm to enable active response according to the situation and control the vehicle according to hand movements to give mobility. A controller is manufactured using a flex sensor and agyro sensor, and the roll and pitch values of the two gyro sensors are adjusted to control the angle of the robot arm and specify the vehicle direction. In addition, by designating the levels of the three flex sensors, the motor is operated according to hand movements, and a robot arm is implemented so that objects can be picked up and moved.

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.15-18
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR performed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Development of an autonomous biped walking robot

  • hyeung-sik choi;Oh, jeong-min;Kim, young-sik;Baek, chang-yul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.105.6-105
    • /
    • 2002
  • Contents 1We developed a new type of lower part of the human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch Joints and one roll joint. In all, a 8 degree-of-freedom robot was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has an embeded controller system including host computer, batteries and motor drivers. In the performance test, we had basic stable walking data so far, but we f...

  • PDF

Development of Human-Sized Biped Robot (인체형 이족 보행로봇의 개발)

  • 최형식;박용헌;이호식;김영식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.267-267
    • /
    • 2000
  • We developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. The robot overcomes the limit of the driving torque of conventional BWRs. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. The BWR was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. In the performance test, the BWR peformed nice motions of sitting-up and sitting-down. Through the test, we could find capability of high performance in biped-walking.

  • PDF

Modeling and RPY Motion Analysis of Bipedal Walking Robots (이족 로봇의 보행 모델링 및 롤/피치/요 운동 특성 분석)

  • Kim, Byoung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.353-358
    • /
    • 2011
  • This paper presents a virtual-legged walking model for bipedal robots and analyzes its fundamental RPY(Roll, Pitch, and Yaw) motion effects by simulation. For the purpose of identifying the motion effects of the bipedal walking, we assign some arbitrary trajectories both at the center of mass and at the center of pressure of the robot based on human walking. And then we verify the major moments to the roll, pitch, and yaw directions of the robot. As a result, it is shown that those motions are natural in the process of bipedal walking and they are deeply dependent on the step distance, the vertical level of the center of mass, and the acceleration of the robot. The importance of trajectory planning for the footstep location during a bipedal walking is finally addressed in terms of balance.

The Usability of a Robot as an Educational Assistant in a Kindergarten and Young Children's Perceptions of their Relationship with the Robot (유아교육기관에서의 교사보조 로봇에 대한 유아의 경험과 인식)

  • Hyun, Eun-Ja;Park, Hyun-Kyung;Jang, Sie-Kyung;Yeon, Hye-Min
    • Korean Journal of Child Studies
    • /
    • v.31 no.1
    • /
    • pp.267-282
    • /
    • 2010
  • The purpose of this study was to examine the usability of a robot in kindergartens and the children's perceptions of that robot. In order to answer these questions, a field study, picture drawing and interviews were conducted over twelve days in a kindergarten located in Seoul. Our results indicated that children were likely to use the robot in a group and girls tended to use it more than boys. Children's affection towards the robot was positive and they perceived the robot mostly in terms of a friend. Finally, the picture drawing activity differed according to the usability level. Children who were in the high usability level grouping engaged more with educational content and storytelling while the low usability level grouping utilized the robot for singing in a large group.

Development of Riding Robot System and Body State Index for Healthcare Service (승마용 헬스 케어 로봇 시스템과 신체 상태 지수 관리기술)

  • Lim, Mee-Seub;Lim, Joon-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.327-333
    • /
    • 2009
  • This paper describe the riding robot system named by "RideBot" which is a riding robot like as a horse. In order to simulate the riding motions, we develope the saddle mechanism which can generate 3 DOF motions including pitch, roll, and bounce movement, and also we controlled the riding motions and the intention of horseman. To generate the riding motions with the bodily sensation, we developed Novel Washout Filter and the algorithms for motion control. And also, we developed some health care service for the health care of horseman. A body state index was proposed that evaluates the personal health state from both the measured physiological variables and the surveyed questions. The physiological variables such as weight, blood pressure, heart rate variability (HRV), accelerated state photoplethysmograph(APG), body fat, and happiness index were measured by the specially designed bio-handle system and survey questions. The efficiency of the proposed ride robot is evaluated in the experiments.

  • PDF

Balancing Control of a Ball Robot Based on an Inverted Pendulum (역진자 기반 공 로봇의 균형제어)

  • Kang, Seok-Won;Park, Chan-Ik;Byun, Gyu-Ho;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.834-838
    • /
    • 2013
  • This paper proposes a new ball robot which has a four axis structure and four motors that directly actuate the ball to move or to maintain the balance of the robot. For the Balancing control, it is possible to use non-model-based controller to control simply without complex formula. All the gains of the controller are heuristically adjusted during the experiments. The tilt angle is measured by IMU sensors, which is used to generate the control input of the roll and pitch controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed ball robot.

Development of Human-Sized Biped Robot of improvement in model (이족 보행로봇 개선모델의 개발)

  • 최형식;박용헌;정경식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.458-461
    • /
    • 1997
  • We have developed a human-sized BWR(biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gar ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. For the purpose of autonomous walking and higher performance, we improved the previous developed BWR. We improved the motor drive efficiency, designed the ball screw actuator in a modular type, and simplified the electric wires. Through this modification, we achieved better performance in walking.

  • PDF