• Title/Summary/Keyword: Robot Motion Planning

Search Result 199, Processing Time 0.024 seconds

Motion Planning of a Robot Manipulator for Conveyor Tracking (컨베이어 추적을 위한 로보트 매니퓰레이터의 동적계획)

  • 박태형;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.995-1006
    • /
    • 1989
  • If robots have the ability to track the parts on a moving conveyor belt, the efficiency of the manipulation tasks will be increased. This paper presents a motion planning algorithm for conveyor tracking. Tracking trajectory of a robot manipulator is determined by belt speed, initial part position, and initial robot position. Torque limit, maximum velocity, maximum acceleration and maximum jerk are also taken into account. To obtain the tracking solution, the problem is converted to the linear quadratic tracking problem. We describe the manipulator dynamics as second order state equation using parametric functions. Constraints on torques and smoothness are converted to those on input and state variables. The solution of the state equation which minimizes the performance index is obtained by dynamic programming method. Numerical examples are then presented to demonstrate the utility of the motion planning method developed.

Study on Hybrid Control for Motion Control of Mobile Robot Systems (이동로봇의 동작 제어를 위한 하이브리드 시스템 제어에 관한 연구)

  • Lim, Mee-Seub;Lim, Jin-Mo;Lim, Joon-Hong;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2348-2350
    • /
    • 1998
  • The hybrid control system for a wheeled mobile robot with nonholonomic constraints to perform a cluttered environment maneuver is proposed. The proposed hybrid control system consists of a continuous state system for the trajectory control, a discrete state system for the motion and orientation control, and an interface control system for the interaction process between the continuous dynamics and the discrete dynamics The continuous control systems are modeled by the switched systems with the control of driving wheels, and the digital automata for motion control are modeled and implemented by the abstracted motion of mobile robot. The motion control tasks such as path generation, motion planning, and trajectory control for a cluttered environment are investigated as the applications by simulation studies.

  • PDF

Intelligent Motion and Autonomous Maneuvering of Mobile Robots using Hybrid System (하이브리드 시스템을 이용한 이동로봇의 지능적 동작과 자율주행)

  • 이용미;임준홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.152-152
    • /
    • 2000
  • In this paper, we propose a new approach to intelligent motion and autonomous maneuvering of mobile robots using hybrid system. In high Level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot as a low vevel are specified in the abstracted motions, The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments.

  • PDF

Trajectory Planning of Multi Agent Robots for Robot Soccer Using Complex Potential (복소 포텐셜을 이용한 로봇 축구용 다개체 로봇의 경로 계획)

  • Lee, Kyunghee;Kim, Donghan;Rew, Keun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1073-1078
    • /
    • 2012
  • This paper deals with the trajectory planning of multi agent robots using complex potential theory for robot soccer. The complex potential theory is introduced, then the circle theorem is used to avoid obstacles, and the vortex pair is used to make precise kicking direction of robot. Various situations of robot soccer are simulated and the effect of vortex strength and the speed of robots are discussed and the better way to avoid obstacles and to kick the precise direction is found. The feasibilities of complex potential theory to apply for the multi agent robots are successful.

Kinematic Modeling for a Type of Mobile Robot using Differential Motion Transformation (미소운동 변환방법을 이용한 몇가지 이동로봇의 기구학 모델)

  • Park, Jae-Han;Kim, Soon-Chul;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1145-1151
    • /
    • 2013
  • Kinematic modeling is a prerequisite for motion planning and the control of mobile robots. In this paper, we proposed a new method of kinematic modeling for a type of mobile robot based on differential motion transformation. The differential motion implies a small translation and rotation in three-dimensional space in a small time interval. Thus, transformation of the differential motion gives the velocity relationship, i.e., Jacobian between two coordinate frames. Since the theory of the differential motion transformation is well-developed, it is useful for the systematic velocity kinematic modeling of mobile robots. In order to show the validity for application of the differential motion transformation, we obtained velocity kinematic models for a type of exemplar mobile robot including spherical ballbots.

Path optimization method for shifting path planning of marking robot (먹매김 로봇 작업경로 설정을 위한 최적경로 탐색방법)

  • Lim, Hyunsu;Kim, Taehoon;Kim, Taehoon;Kim, Chang-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.144-145
    • /
    • 2022
  • Since the marking robot draws lines by point-to-point operation, the robot's shifting path greatly affects the working time and productivity. Therefore, it is required to analyze the movement method based on the robot's motion and plan to minimize the movement time. Therefore, this study proposes a method that can optimize the robot's shifting path to minimize the working time of the marking robot. Through the results of this study, it is expected that the non-working time of the marking robot will be reduced and the efficient operation will be possible.

  • PDF

Motion Planning of Bimanual Robot Using Bimanual Task Compatibility (작업 적합도를 이용한 양팔 로봇의 운동 계획)

  • Hwang, Myun-Joong;Chung, Seong-Youb;Lee, Doo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.656-662
    • /
    • 2008
  • A cost-function based on manipulability and compatibility is designed to determine assembly motions of two cooperating manipulators. Assembly motions are planned along the direction maximizing performance indices to improve control performance of the two manipulators. This paper proposes bimanual task compatibility by defining cost functions. The proposed cost functions are applied and compared to the bimanual assembly task. The problem is formulated as a constrained optimization considering assembly constraints, position of the workpieces, and kinematics and redundancy of the bimanual robot. The proposed approach is evaluated with simulation of a peg-in-hole assembly with an L-shaped peg and two 3-dof manipulators.

Motion Planning for Humanoid Robot Using Embedded Vision System (임베디드 비전 시스템 기반 휴머노이드 로봇의 운동 계획)

  • Noh, Su-Hee;Han, Na-Mi;No, Heung-Sik;Kim, Yong-Tae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.50-53
    • /
    • 2008
  • 본 논문에서는 복잡한 환경에서 휴머노이드 로봇의 영상기반 운동계획을 제안하였다. 먼저 영상전처리 과정을 통해 작업환경에서 경로 계획으로 최적 경로를 탐색하고, 탐색된 경로의 거리와 방향각에 따라 퍼지규칙을 적용하여 보행 프리미티브를 선택하는 운동계획방법을 제안하였다. 다양한 장애물을 갖는 복잡한 환경에서 로봇의 보행 프리미티브를 사용하여 영상기반의 운동계획이 실시간으로 수행 가능하도록 설계하였다. 제안한 운동계획방법은 임베디드 비전 시스템을 사용한 휴머노이드 로봇을 실제 제작하여 실험을 통해 성능을 검증하였다.

  • PDF

Efficient Minimum-Time Cornering Motion Planning for Differential-Driven Wheeled Mobile Robots with Motor Control Input Constraint (모터 제어 입력 제한 조건이 고려된 차륜 이동 로봇을 위한 효율적인 최소 시간 코너링(Cornering) 주행 계획)

  • Kim, Jae-Sung;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • We propose an efficient minimum-time cornering motion planning algorithms for differential-driven wheeled mobile robots with motor control input constraint, under piecewise constant control input sections. First, we established mobile robot's kinematics and dynamics including motors, divided the cornering trajectory for collision-free into one translational section, followed by one rotational section with angular acceleration, and finally the other rotational section with angular deceleration. We constructed an efficient motion planning algorithm satisfying the bang-bang principle. Various simulations and experiments reveal the performance of the proposed algorithm.

A collision-free path planning for multiple mobile robots by using hopfield neural net with local range information (국소 거리정보를 얻을 수 있는 다중 이동로보트 환경에서의 Hopfield 신경회로 모델을 이용한 충돌회피 경로계획)

  • 권호열;변증남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.726-730
    • /
    • 1990
  • In this paper, assuming that local range information is available, a collision-free path planning algorithm for multiple mobile robots is presented by using Hopfield neural optimization network. The energy function of the network is built using the present position and the goal position of each robot as well as its local range information. The proposed algorithm has several advantages such as the effective passing around obstacles with the directional safety distance, the easy implementation of robot motion planning including its rotation, the real-time path planning capability from the totally localized computations of path for each robot, and the adaptivity on arbitrary environment since any special shape of obstacles is not assumed.

  • PDF