• Title/Summary/Keyword: Robot Hands

Search Result 98, Processing Time 0.021 seconds

A Study on Designing Key Fastening Parts for Compatibility of Teaching-Aids-Robots (교구로봇 호환성을 위한 체결구 부품 설계에 관한 연구)

  • Moon, Jeon-Il;Ryuh, Young-Sun;An, Jin-Ung
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.10-17
    • /
    • 2011
  • This paper deals with researching and designing the fastening parts to be used in order to assemble various Teaching Aids Robots (or Hands-on Robots) with originally incompatible parts supplied by different manufacturers. The suggested fastening parts provide the compatibility among Teaching Aids Robots even though the educational robot customers use incompatible parts from different companies. The designed fastening parts are classified into four set groups such as frame set, sliding-bar set, connector set, and set of chuck and rivet/bolt. Each set of the fastening parts reflects the needs collected from the users, and then some portion of new idea has been added to implement the needs. In this paper, the examples of the Teaching Aids Robots which are assembled with both commercial parts and the designed parts are presented in order to evaluate the compatibility and usability of the suggested fastening parts. As a result, both compatibility and usability of the fastening parts suggested in this paper were proved. The designed fastening parts have been distributed to more than 100 elementary schools nationwide.

Robot Mobile Control Technology Using Robot Arm as Haptic Interface (로봇의 팔을 햅틱 인터페이스로 사용하여 로봇의 이동을 제어하는 기술)

  • Jung, Yu Chul;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • This paper proposed the implementation of haptic-based robot which is following a human by using fundamental sensors on robot arms without additional sensors. Joints in the robot arms have several motors, and their angles can be read out by these motors when a human pushes or pulls the robot arms. So these arms can be used as haptic sensors. The implemented robot follows a human by interacting with robot arms and human hands, as a human follows a human by hands.

A Stydy on the Design and Control of Master/Slave Type Robot Hand) (Master/Slave형 로봇 손의 설계 및 제어에 관한 연구)

  • 문희형;권대갑
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.04a
    • /
    • pp.390-394
    • /
    • 1994
  • In many cases, tasks are unpredictable and therefore not doable by special-purpose or pro-programble robots. So master/slave type robot hands which combine human perceptions with conventional robot hands are required as robot end effector. These also can be applied to hazardous worksites such as outer space, deep sea and nuclear power plant. In this study, master/slave type robot fingers with 3 joints each are designed and constructed. To control force accurately, TDT(tension difference type) torque sensors are constructed and attached toeachjoints of slave finger and new force reflecting control algorithm is suggested. Finally, experimental results show that the new control algorithm can be successfully applied.

  • PDF

Design and Experiment of a miniature 413-way proportional valve for a servo-pneumatic robot hand (공압구동식 로봇손을 위한 소형 4/3-Way 비례제어밸브의 설계 및 실험)

  • 류시복;김상만;홍예선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.331-336
    • /
    • 1995
  • In this past decade, industrial robot have substituted human workers successfully in certain areas, however, the applications are limited due to the shortcoming in their mechanism and control strategies. Many researchers, therefore, have focused on improving the mechanical and sensory capabilities. Developing mult-degree-of-freedom end effectors, in other words robot hands, is one of the topics that researchers have begun to improve the limitation. A set of direct drive type servo-pneumatic finger joint has been developed for a dexterous robot hand. To control the pneumatic finger joints, a prototype 4/3-way proportional control valve has been designed and tested as a preliminary, research for the control of the pneumatic finger joints. A series of experiments have been conducted to verify the performance characteristics of the valve and the conventional proportional error contral with minor-loop compensation has been used to control the anguar position of the finger joints.

  • PDF

Remote Control Robot Arm Using Leap Motion Sensor and Bluetooth Communication (립모션 센서와 블루투스 통신을 이용한 원격 제어 로봇팔)

  • Lee, Jae-Won;Kim, Han-Sol;Kim, Jun-Ho;Bae, Jae-Hyeok;Ryu, Chang-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1127-1134
    • /
    • 2017
  • In this study, the robot arm control system was implemented that is operated by human hands, which can be used in environments that are inaccessible to humans. This function has to be sent to the robot's arms after extracting coordinates of human hands. Through mapping and bluetooth communication we use a leap motion sensor with infrared light and Image recognition sensor.

Analysis of Research Trends on Robot Education of Young Children and Elementary Students for the Development of Hands-on Robot Program for Young Children (유아 교구로봇 프로그램 개발을 위한 유아와 초등학생 로봇교육의 연구동향 분석)

  • Kim, Sang-Hee;Kim, Sang-Un
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.859-868
    • /
    • 2017
  • The purpose of this study is to investigate the research trend of robot education for young children and elementary students as a basic study for the development of hands-on robot program for young children. Trends by year, research contents, and effectiveness of 155 dissertations and journal papers from 2006 to May 2016 related to robot education for young children and elementary students were analyzed. The results were as follows. In the research subject, research was conducted in the order of integrated education, attitudes and awareness research, and response research for young children and programming education, design development research, and integrated education for elementary students. In the research method, observational research and development research were the most common in young children and elementary students, respectively. In the effectiveness validation, research on social and emotional interaction and research on creativity were the most common in young children and elementary students, respectively. Based on the results of this study, the analysis provided basic data for the development of programs for young children's hands-on robot activities and suggested the direction and implications of robot education in connection with SW education of young children and elementary students.

The Effect of Programming Education Using Hands-on Robot on Learning Motivation and Academic Achievement of Prospective Elementary Teachers (교구로봇을 활용한 프로그래밍 교육이 예비 초등교사의 학습동기 및 학업성취도에 미치는 영향)

  • Yang, Gwonwoo
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.4
    • /
    • pp.575-584
    • /
    • 2014
  • Lately, as the importance of software and the software education has been emphasized, the studies on ways of teaching programming to elementary students have been actively progressed. However, most of undergraduates as prospective elementary teachers who will be in charge of teaching programming at the elementary schools have a lack of interest in programming education as well as of the understanding of basic programming principles. Therefore, this study investigated how programming education using hands-on robot and scratch affected learning motivation and academic achievement of preliminary teachers. The comparison of results of two programming educations shows that the programming education using hands-on robot revealed statistically significant difference in learning motivation and academic achievement.

Design and Experiment of a Miniature 4/3-Way Proportional Valve for a Servo-Pneumatic Robot Hand (공압 구동식 로봇 손을 위한 소형 4/3-way 비례제어 밸브의 설계 및 실험)

  • 류시복;홍예선
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.142-147
    • /
    • 1998
  • Developing robot hands with multi-degree-of-freedom is one of the topics that researchers have recently begun to improve the limitation by adding flexibility and dexterity. In this study, an articulated servo-pneumatic robot hand system with direct-drive joints has been developed whose main feature is the minimization of the dimension. The servo-pneumatic system is advantageous to fabricate a dexterous robot hand system due to the high torque-to-weight and torque-to-volume ratio. This enables the design of a finger joint with an integrated rotary vane type actuator which produces high output torque without reduction gears, being very robust. In order to control the servo-pneumatic finger joints, a miniature proportional valve that can be attached to the robot hand is required. In this paper, a flapper nozzle type 4/3-way proportional directional valve has been designed and tested. The experimental results show that the developed valve can control a finger joint satisfactorily without much vibratory joint movements and acoustic noises.

  • PDF

Hands-free Robot Control System Using Mouth Tracking (입 추적을 이용한 로봇 원격 제어 시스템)

  • Wang, Liang;Xu, Yongzhe;Ahmed, Minhaz;Rhee, Phill-Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.405-408
    • /
    • 2011
  • In this paper, we propose a robot remote control system based on mouth tracking. The main idea behind the work is to help disabled people who cannot operate a joystick or keyboard to control a robot with their hands. The mouth detection method in this paper is mainly based on the Adaboost feature detection approach. By using the proposed new Haar-like features for detecting the corner of mouth, the speed and accuracy of detection are improved. Combined with the Kalman filter, a continuous and accurate mouth tracking has been achieved. Meanwhile, the gripping commands of the robot manipulator were also achieved by the recognition of the user.s mouth shape, such as 'pout mouth' or 'grin mouth'. To assess the validity of the method, a mouth detection experiment and a robot cargo transport experiment were applied. The result indicated that the system can realize a quick and accurate mouse tracking; and the operation of the robot worked successfully in moving and bringing back items.

Force Control of Robot Fingers using Series Elastic Actuators (직렬 탄성 액츄에이터 기반의 로봇 손가락의 힘 제어)

  • Lee, Seung-Yup;Kim, Byeong-Sang;Song, Jae-Bok;Chae, Soo-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.964-969
    • /
    • 2012
  • Robot hands capable of grasping or handling various objects are important for service robots to effectively aid humans. In particular, controlling a contact force and providing a compliant motion are essential when the hand is in contact with objects. Many dexterous robot hands equipped with force/torque sensors have been developed to perform force control, but they suffer from the complexity of control and high cost. In this paper, a low-cost robot hand based on SEA (Series Elastic Actuator), which is composed of compression spring, stretch sensor, and wire, is proposed. The grasping force can be estimated by measuring the compression length of spring, which would allow the hand to perform force control. A series of experimentations are carried out to verify the performance of force control of the proposed robot hand, and it is shown that it can successfully control the contact force without any additional force/torque sensors.