• Title/Summary/Keyword: Robot Cooperation

Search Result 267, Processing Time 0.029 seconds

Analysis of Factors for the Success in Entry into Cooperation Robot Market (협동로봇 시장 진출 성공요인 분석)

  • Kim, Shin-Pyo
    • Journal of Industrial Convergence
    • /
    • v.15 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Robot refers to machines that recognize the external environment and assess the given situations in order to operate autonomously by imitating the manner in which humans behave. Although Korea still lacks global competitiveness, Korea, as the $4^{th}$ ranked robot manufacturing country in the world, is currently expanding the domains of robots from application in manufacturing to application in service provision. Accordingly, this study aims to analyze the factors for the success in entry into the cooperation robot market among various robotic markets in accordance with the literary research method in consideration for the importance of robot industry that could determine the future national competitiveness. The result of the analysis of the factors for the success in entry into the cooperation robot market, shows that factors including analysis of the trends in manufacturing robot market, strategy for benchmarking of the leading cooperation robot companies, activation of small and medium enterprise-centered cooperation robotic industry, excavation of demands for cooperation robots with focus on automobile, semiconductor and IT industries, utilization of the opportunities provided by government's robotic industry policies and standardization of cooperation robot components, etc. determine whether one will succeed in the market or not. Furthermore, it is believed that fortification of competitiveness of the manufacturing sector through the powerful policy support for the robotic industry at government level and policies on cultivation of new growth engine through specialization of the robotic areas closely related to daily life must be implemented concurrently because it is forecasted that competitiveness in robotics technology will become the criterion for national competitiveness in the future.

  • PDF

Cooperation of Heterogeneous Robot Team for Localization and Map Building (이종 로봇팀의 협업을 통한 맵 빌딩과 위치추정)

  • Jeong, Jin-Su;Lim, Yun-Won;Kang, Soo-Hyek;Kim, Dong-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper we present cooperation of heterogeneous robot team, composed of a wheeled robot and a helicopter for localization and map building. This heterogeneous robot team can successfully fulfill task by combining the abilities of both robots than single robot because wheeled robot and helicopter have complementing ability. The scenario describes a tightly cooperative task, where the wheeled robot move carrying the helicopter and detect obstacles, if there are obstacles, helicopter take off for map building and land, then robot team move destination avoiding obstacles. We present PID controller for position control of helicopter and transformation algorithm to global coordinate from image pixel coordinate. Experimental result show that the proposed method is valid.

Evolvable Cooperation Strategy for the Interactive Robot Soccer with Genetic Programming

  • Kim, Hyoung-Rock;Hwang, Jung-Hoon;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.59.2-59
    • /
    • 2001
  • This paper presents an evolvable cooperation strategy based on a genetic programming for the interactive robot soccer game. The interactive robot soccer game has been developed to allow a person to join in the game dynamically and to reinforce entertainment characteristics. In this game, a cooperation strategy between humans and autonomous robots is very important in order to make the game more enjoyable. First of all, necessary action sets for the cooperation strategy and its strategy structure are presented. In the first stage, a blocking action that an autonomous robot cut off an enemy robot from disturbing the way of the human controlled robot has been considered. The success probability of the blocking action has beer obtained in ...

  • PDF

Design and Implementation of OPC UA-based Collaborative Robot Guard System Using Sensor and Camera Vision (센서 및 카메라 비전을 활용한 OPC UA 기반 협동로봇 가드 시스템의 설계 및 구현)

  • Kim, Jeehyeong;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.47-55
    • /
    • 2019
  • The robot is the creation of new markets and various cooperation according to the manufacturing paradigm shift. Cooperative management easy for existing industrial robots, robots work on productivity, manpower to replace the robot in every industry cooperation for the purpose of and demand increases.to exist But the industrial robot at the scene of the cooperation working due to accidents are frequent, threatening the safety of the operator. Of industrial site is configured with a robot in an environment ensuring the safety of the operator to and confidence to communicate that can do the possibility of action.Robot guard system of the need for development cooperation. The robot's cooperation through the sensors and computer vision task within a radius of the double to prevent accidents and accidents should reduce the risk. International protocol for a variety of industrial production equipment and communications opc ua system based on ultrasonic sensors and cnn to (Convolution Neural Network) for video analytics. We suggest the cooperation with the robot guard system. Robots in a proposed system is unsafe situation of workers evaluating the possibility of control.

A Study of Cooperative Algorithm in Multi Robots by Reinforcement Learning

  • Hong, Seong-Woo;Park, Gyu-Jong;Bae, Jong-I1;Ahn, Doo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.149.1-149
    • /
    • 2001
  • In multi robot environment, the action selection strategy is important for the cooperation and coordination of multi agents. However the overlap of actions selected individually by each robot makes the acquisition of cooperation behaviors less efficient. In addition to that, a complex and dynamic environment makes cooperation even more difficult. So in this paper, we propose a control algorithm which enables each robot to determine the action for the effective cooperation in multi-robot system. Here, we propose cooperative algorithm with reinforcement learning to determine the action selection In this paper, when the environment changes, each robot selects an appropriate behavior strategy intelligently. We employ ...

  • PDF

Cooperative Control of the Multi-Agent System for Teleoperation (원격조종 다개체 로봇의 협동제어)

  • 황정훈;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.154-154
    • /
    • 2000
  • The cooperative strategy for the teleoperated multi-agent system is presented. And this scheme has been applied to the teleoperated robot soccer system that is newly proposed. For the teleoperated robot soccer system, we made mapping functions to control a 2-wheeled mobile robot using a 2 DoF stickcontroller. The simulation with a real stickcontroller has been evaluated the performance of the proposed mapping function. Then, the basic cooperation strategy has been tested between teleoperated robot and autonomous robot It is shown that the multi-agent system for teleoperation can have a good performance for a job Like a scoring a goal

  • PDF

Co-Operative Strategy for an Interactive Robot Soccer System by Reinforcement Learning Method

  • Kim, Hyoung-Rock;Hwang, Jung-Hoon;Kwon, Dong-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • This paper presents a cooperation strategy between a human operator and autonomous robots for an interactive robot soccer game, The interactive robot soccer game has been developed to allow humans to join into the game dynamically and reinforce entertainment characteristics. In order to make these games more interesting, a cooperation strategy between humans and autonomous robots on a team is very important. Strategies can be pre-programmed or learned by robots themselves with learning or evolving algorithms. Since the robot soccer system is hard to model and its environment changes dynamically, it is very difficult to pre-program cooperation strategies between robot agents. Q-learning - one of the most representative reinforcement learning methods - is shown to be effective for solving problems dynamically without explicit knowledge of the system. Therefore, in our research, a Q-learning based learning method has been utilized. Prior to utilizing Q-teaming, state variables describing the game situation and actions' sets of robots have been defined. After the learning process, the human operator could play the game more easily. To evaluate the usefulness of the proposed strategy, some simulations and games have been carried out.

Design and Control of a Multi-Function and Multi-Joint Robot (다기능 다관절 로봇의 설계 및 제어)

  • Joo Jin-Hwa
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In this paper show how to design a redundant robot which is suitable for the multiple task without any constraints on the workspace. The implementation is possible by the rigid connection of a mobile robot and a task robot. Use a five joint articulated robot as the task robot; designed the 3 joint mobile robot for this usage. For a task execution assigned to the redundant robot, not only the task robot but the mobile robot should work in the coordinated way. therefore, a kinematic connection of the two robots should be cleary represented in a frame. And, also the dynamic interaction between the two robots needs to be analyzed. Clarified these issues considering the control of the redundant robot. Finally, demonstrate away of utilization of the redundancy as the cooperation between the mobile robot and the task robot to execute a common task.

  • PDF

A Study of Solving Maze Escape Problem through Robots' Cooperation (로봇협동을 통한 미로탈출 문제해결 방안)

  • Hong, Ki-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4167-4173
    • /
    • 2010
  • ICT education guidelines revised in 2005 reinforce computer science elements such as algorithm, data structure, and programming covering all schools. It means that goal of computer education is improving problem-solving abilities not using of commercial software. So this paper suggests problem-solving method of maze escape through robots' cooperation in an effort of learning these elements. Problems robots should solve are first-search and role-exchange. First-search problem is that first robot searches maze and send informations about maze to the second robot in real time. Role-exchange problem is that first robot searches maze, but loses its function at any point. At this time second robot takes a role of first robot and performs first robot's missions to the end. To solve these two problems, it goes through four steps; problem analysis, algorithm description, flowchart and programming. Additional effects of our suggestion are chance of cooperation among students and use of queue in data structure. Further researches are use of more generalized mazes, application to real field and a talented curriculum.

Implementation of Home Service Robot System consisting of Object Oriented Slave Robots (객체 지향적 슬레이브 로봇들로 구성된 홈서비스 로봇 시스템의 구현)

  • Ko, Chang-Gun;Ko, Dae-Gun;Kwan, Hye-Jin;Park, Jung-Il;Lee, Suk-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.337-339
    • /
    • 2007
  • This paper proposes a new paradigm for cooperation of multi-robot system for home service. For localization of each robot. the master robot collects information of location of each robot based on communication of RFID tag on the floor and RFID reader attached on the bottom of the robot. The Master robot communicates with slave robots via wireless LAN to check the motion of robots and command to them based on the information from slave robots. The operator may send command to slave robots based on the HRI(Human-Robot Interaction) screened on masted robot using information from slave robots. The cooperation of multiple robots will enhance the performance comparing with single robot.

  • PDF