• Title/Summary/Keyword: Robot Control System

Search Result 2,879, Processing Time 0.032 seconds

Hand Pressing Control Using the Five-Axis Force/Moment Sensor of Finger Rehabilitation (손가락 재활로봇의 5축 힘/모멘트센서를 이용한 손 누름제어)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.192-197
    • /
    • 2012
  • This paper describes the control of the hand fixing system attached to the finger rehabilitation robot for the rehabilitation exercise of patient's fingers. The finger rehabilitation robot is used to exercise the finger rehabilitation, and a patient's hand is safely fixed using the hand fixing system. In this paper, the hand fixing system was controlled with PD gains to fix a palm of the hand, and the characteristic test for the hand fixing system was carried out to sense the fixed hand movement of the front and the rear, that of the left and the right, and that of the upper. It is thought that the hand fixing system could safely fix the hand, and the movement of the fixed hand could be perceived using the five-axis force/moment sensor attached to the hand fixing system.

A Study on Tracking Control of Remote Operated Excavator for Field Robot (필드로봇용 원격 굴삭 시스템의 궤적제어에 관한 연구)

  • Yang, S.S.;Jin, S.M.;Choi, J.J.;Lee, C.D.;Kim, Y.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • Hydraulic excavators are the representative of field robot and have been used in various fields of construction. Since the excavator operates in the hazardous working environment, operators of excavator are exposed in harmful environment. Therefore, the hydraulic excavator automation and remote operation system has been investigated to protect from the hazardous working environment. In this paper, remote operation excavator system is developed using the mini hydraulic excavator and the tracking control system of each links of excavator is designed. To apply the tracking control system, the adaptive sliding mode control algorithm is proposed. It is found that the performance of the proposed control system is improved through experimental results of using the remote operation excavator system.

  • PDF

Design of teleoperated robot system for nozzle dam maintenance in steam generator (증기발생기 노즐댐 취급용 원격조작 로봇 시스템 설계)

  • 황석용;김창회;김병수;이영광;김승호;이종민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.815-820
    • /
    • 1993
  • Robotic technology has been grown up conspicuously by its versatility. KAERI has been involved in one of facets of robot industry to keep abreast of rapid evolving technologies In robotic field and has launched long-term R&D plan to assure the stable nuclear energy. In this paper, the latest development status of teleoperated robot system has been presented with emphasis the configuration of overall control system with 3 dimensional graphic system that provides operators with tele-presence situation. This robot system under development, composed of master-slave arm with controller and graphic simulator, is operated by a master manipulator to enable an installation and removal operation of nozzle dam system for steam generator. Evaluation and analysis has been carried out to get optimal parameters of robot system.

  • PDF

A Real-time Localization System Based on IR Landmark for Mobile Robot in Indoor Environment (이동로봇을 위한 IR 랜드마크 기반의 실시간 실내 측위 시스템)

  • Lee, Jae-Y.;Chae, Hee-Sung;Yu, Won-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.868-875
    • /
    • 2006
  • The localization is one of the most important issues for mobile robot. This paper describes a novel localization system for the development of a location sensing network. The system comprises wirelessly controlled infrared landmarks and an image sensor which detects the pixel positions of infrared sources. The proposed localization system can operate irrespective of the illumination condition in the indoor environment. We describe the operating principles of the developed localization system and report the performance for mobile robot localization and navigation. The advantage of the developed system lies in its robustness and low cost to obtain location information as well as simplicity of deployment to build a robot location sensing network. Experimental results show that the developed system outperforms the state-of-the-art localization methods.

A Study on the Practicality of Vision Control Scheme used for Robot's Point Placement task in Discontinuous Trajectory (불연속적인 궤적에서 로봇 점 배치작업에 사용된 비젼 제어기법의 실용성에 대한 연구)

  • Son, Jae-Kyeong;Jang, Wan-Shik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.386-394
    • /
    • 2011
  • This paper is concerned with the application of the vision control scheme for robot's point placement task in discontinuous trajectory caused by obstacle. The proposed vision control scheme consists of four models, which are the robot's kinematic model, vision system model, 6-parameters estimation model, and robot's joint angles estimation model. For this study, the discontinuous trajectory by obstacle is divided into two obstacle regions. Each obstacle region consists of 3 cases, according to the variation of number of cameras that can not acquire the vision data. Then, the effects of number of cameras on the proposed robot's vision control scheme are investigated in each obstacle region. Finally, the practicality of the proposed robot's vision control scheme is demonstrated experimentally by performing the robot's point placement task in discontinuous trajectory by obstacle.

Kinematic Modeling for Position Feedback Control of an 2 - D.O.F Wheeled Mobile Robot (2-자유도 이동 로보트의 위치 궤환제어를 위한 기구학 모델링)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.27-40
    • /
    • 1996
  • This paper proposed a kinematic modeling methodlogy and feedback control system based on kinematics for 2 degrees of freedom of 4-wheeled mobile robot. We assigned coordinate systems to specify the transformation matirx and write the kinematic equation of motion. We derived the actuated inverse and sensed forwared solution for the calculation of actual robot orientation and the desired robot orientation. It is the most significant error and has the largest impact on the motion accuracy. To calculate the WMR position in real time, we introduced the dead-reckoning algorithm and composed two feedback control system that is based on kinematics. Through the simulation result, we compare with the ffedback control system for position control.

  • PDF

Vibration Control of a Single-wheel Robot Using a Filter Design (필터 설계를 통한 한 바퀴 구동 로봇의 진동 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.863-868
    • /
    • 2015
  • In this paper, the vibration of a single-wheel mobile robot is minimized by designing a filter. An AHRS (Attitude and heading reference system) sensor is used for measuring the state of the robot. The measured signals are analyzed using the FFT method to investigate the fundamental vibrational frequency with respect to the flywheel's speed of the gimbal system. The IIR notch filter is then designed to suppress the vibration at the identified frequency. After simulating the performance of the designated filter using the measured sensor data through extensive experiments, the filter is actually implemented in a single-wheel mobile robot, GYROBO. Finally, the performance of the designed filter is confirmed by performing the balancing control task of the GYROBO system.

Nonlinear control of unicycle-type mobile robot (Unicycle-type 이동로봇의 비선형 제어)

  • 김용진;문인혁
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.131-134
    • /
    • 2001
  • This paper proposes a stable control rule for nonlinear unicycle-type mobile robot. The control method uses a local error coordinate system, velocity and distance constants $\kappa$$\_$x/, $\kappa$$\_$y/, and he. Stability of control rule is proved Liapunov function. System input to the mobile robot is reference posture ($\chi$$\_$r/, y$\_$r/, $\theta$$\_$r/)/sup/ $\tau$/ and reference e velocity (ν$\_$r/,$\omega$$\_$r/)$\^$$\tau$/. System output of the mobi-le robot is velocity of driving wheels. We introduce limit velocity for preventing high initial speed. From simulation results, we can see the proposed control rule is stable.

  • PDF

A Study on Architecting Method of a Welding Robot Using Model-Based System Design Method (모델기반 시스템 설계 방법을 이용한 용접로봇의 상부아키텍쳐 정의에 관한 연구)

  • Park Young-Won;Kim Jin-Ill
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.152-159
    • /
    • 2005
  • This paper describes the application of a model-based system design method critical to complex intelligent systems, PSARE, to a welding robot development to define its top level architecture. The PSARE model consists of requirement model which describes the core processes(function) of the system, enhanced requirement model which adds technology specific processes to requirement model and allocates them to architecture model, and architecture model which describes the structure and interfaces and flows of the modules of the system. This paper focuses on the detailed procedure and method rather than the detailed domain model of the welding robot. In this study, only the top level architecture of a welding robot was defined using the PSARE method. However, the method can be repeatedly applied to the lower level architecture of the robot until the process which the robot should perform can be clearly defined. The enhanced data flow diagram in this model separates technology independent processes and technology specific processes. This approach will provide a useful base not only for improvement of a class of welding robots but also for development of increasingly complex intelligent real-time systems.

Development of Stair Climbing Robot for Delivery Based on Deep Learning (딥러닝 기반 자율주행 계단 등반 물품운송 로봇 개발)

  • Mun, Gi-Il;Lee, Seung-Hyeon;Choo, Jeong-Pil;Oh, Yeon-U;Lee, Sang-Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.121-125
    • /
    • 2022
  • This paper deals with the development of a deep-learning-based robot that recognizes various types of stairs and performs a mission to go up to the target floor. The overall motion sequence of the robot is performed based on the ROS robot operating system, and it is possible to detect the shape of the stairs required to implement the motion sequence through rapid object recognition through YOLOv4 and Cuda acceleration calculations. Using the ROS operating system installed in Jetson Nano, a system was built to support communication between Arduino DUE and OpenCM 9.04 with heterogeneous hardware and to control the movement of the robot by aligning the received sensors and data. In addition, the web server for robot control was manufactured as ROS web server, and flow chart and basic ROS communication were designed to enable control through computer and smartphone through message passing.