• Title/Summary/Keyword: Robot Control Scheme

Search Result 576, Processing Time 0.023 seconds

A Learning Controller for Repetitive Gate Control of Biped Walking Robot (이족 보행 로봇의 반복 걸음새 제어를 위한 학습 제어기)

  • 임동철;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.538-538
    • /
    • 2000
  • This paper presents a learning controller for repetitive gate control of biped robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of teaming control to biped robotic motion is shown via dynamic simulation with 12 dof biped robot.

  • PDF

Corridor Navigation of the Mobile Robot Using Image Based Control

  • Han, Kyu-Bum;Kim, Hae-Young;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1097-1107
    • /
    • 2001
  • In this paper, the wall following navigation algorithm of the mobile robot using a mono vision system is described. The key points of the mobile robot navigation system are effective acquisition of the environmental information and fast recognition of the robot position. Also, from this information, the mobile robot should be appropriately controlled to follow a desired path. For the recognition of the relative position and orientation of the robot to the wall, the features of the corridor structure are extracted using the mono vision system, then the relative position, the offset distance and steering angle of the robot from the wall, is derived for a simple corridor geometry. For the alleviation of the computation burden of the image processing, the Kalman filter is used to reduce search region in the image space for line detection. Next, the robot is controlled by this information to follow the desired path. The wall following control scheme by the PD control scheme is composed of two control parts, the approaching control and the orientation control, and each control is performed by steering and forward-driving motion of the robot. To verify the effectiveness of the proposed algorithm, the real time navigation experiments are performed. Through the result of the experiments, the effectiveness and flexibility of the suggested algorithm are verified in comparison with a pure encoder-guided mobile robot navigation system.

  • PDF

Design of Adaptive-Neuro Controller of SCARA Robot Using Digital Signal Processor (디지털 시그널 프로세서를 이용한 스카라 로봇의 적응-신경제어기 설계)

  • 한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.7-17
    • /
    • 1997
  • During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.

  • PDF

Robust feedback error learning neural networks control of robot systems with guaranteed stability

  • Kim, Sung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.197-200
    • /
    • 1996
  • This paper considers feedback error learning neural networks for robot manipulator control. Feedback error learning proposed by Kawato [2,3,5] is a useful learning control scheme, if nonlinear subsystems (or basis functions) consisting of the robot dynamic equation are known exactly. However, in practice, unmodeled uncertainties and disturbances deteriorate the control performance. Hence, we presents a robust feedback error learning scheme which add robustifying control signal to overcome such effects. After the learning rule is derived, the stability is analyzed using Lyapunov method.

  • PDF

AMN controller for dynamic control of robot manpulators (로봇 머니퓰레이터의 동력학 제어를 위한 AMN제어기)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1569-1572
    • /
    • 1997
  • In this paper, we present an associative memory network (AMN) controller for dynamic robot control. The purpose of using AMN is to reduce the size of required memory in storing and recalling large of daa representing input relationship of nonlinear functions. With the capability AMN can be used to dynamic robot control, which has nonlinear properties inherently. The proposed AMN control scheme has advantages for the inverse dynamics learning no limitatiion of inpur range, and insensitive of payload change. Computer simulations show the effectiveness and feasibility of proposed scheme.

  • PDF

An Adaptive and Robust Controller for the Undersea Robot Manipulator

  • Young-Sik kim;Park, Hyeung-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.2
    • /
    • pp.13-22
    • /
    • 2003
  • To coordinate the robot manipulator along the desired trajectory, the exact model of the dynamics is required. The added mass and added moment of inertia, buoyancy, drag force, and friction mainly affect the dynamics of the undersea robot manipulator, and they are quite complex and unknown. In this reason. the exact model of the undersea robot manipulator is difficult to obtain. In this paper, instead of having efforts to get the exact model of the robot dynamics, a control-based approach was performed. We modeled the dynamics of the undersea robot manipulator whose parameters are unknown, and then applied a proposed direct adaptive and robust control, which is different from previous studies. The unknown added mass, and added moment of inertia, drag force and friction are estimated by the direct adaptive control scheme, and the drag force which is dominant disturbance is compensated by the robust control. Also, stability of the proposed control scheme is analyzed.

Independent Joint Adaptive Control of Robot Manipulator Using the Sugeno-type of Fuzzy Logic (Sugeno형태 퍼지 논리를 이용한 로봇 매니플레이터의 독립관절 적응제어)

  • 김영태
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.55-61
    • /
    • 2003
  • Control of multi-link robot arms is a challenging and difficult problem because of the highly nonlinear dynamics. Independent joint adaptive scheme is developed for control of robot manipulators based on Sugeno-type of fuzzy logic. Fuzzy logic system is used to approximate the coupling forces among the joints, coriolis force, centrifugal force, gravitational force, and frictional forces. The proposed scheme does not require an accurate manipulator dynamic, and it is proved that closed-loop system is asymptotic stable despite the gross robot parameter variations. Numerical simulations for three-axis PUMA robot are included to show the effectiveness of controller.

Precise Tracking Control of Parallel Robot using Artificial Neural Network (인공신경망을 이용한 병렬로봇의 정밀한 추적제어)

  • Song, Nak-Yun;Cho, Whang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip (DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현)

  • 김용태;정동연;한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF

The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip (TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계)

  • 하석흥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF