• Title/Summary/Keyword: Robot Automation System

Search Result 388, Processing Time 0.025 seconds

Co-Operative Strategy for an Interactive Robot Soccer System by Reinforcement Learning Method

  • Kim, Hyoung-Rock;Hwang, Jung-Hoon;Kwon, Dong-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • This paper presents a cooperation strategy between a human operator and autonomous robots for an interactive robot soccer game, The interactive robot soccer game has been developed to allow humans to join into the game dynamically and reinforce entertainment characteristics. In order to make these games more interesting, a cooperation strategy between humans and autonomous robots on a team is very important. Strategies can be pre-programmed or learned by robots themselves with learning or evolving algorithms. Since the robot soccer system is hard to model and its environment changes dynamically, it is very difficult to pre-program cooperation strategies between robot agents. Q-learning - one of the most representative reinforcement learning methods - is shown to be effective for solving problems dynamically without explicit knowledge of the system. Therefore, in our research, a Q-learning based learning method has been utilized. Prior to utilizing Q-teaming, state variables describing the game situation and actions' sets of robots have been defined. After the learning process, the human operator could play the game more easily. To evaluate the usefulness of the proposed strategy, some simulations and games have been carried out.

Performance Evaluation of Concrete Polishing Robot with Omnidirectional Mobile Mechanism (전방향 이동 메커니즘을 적용한 콘크리트 폴리싱 로봇의 성능평가)

  • Cho, Gangik;Chu, Baeksuk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.112-117
    • /
    • 2016
  • In the construction industry, concrete polishing is used to grind and rub the surface of concrete grounds with polishing machines to increase the strength of the concrete after deposition. Polishing is performed manually in spite of the generation of dust and the requirement of frequent replacements of the polishing pad. The concrete polishing robot developed in this research is a novel polishing automation system for preventing the workers from being exposed to poor working environments. This robot is able to change multiple polishing tools automatically; however, the workers can conveniently replace the worn-out polishing pads with new ones. The mobile platform of the polishing robot employs omnidirectional wheels to enable a flexible motion even in small and complicated workspaces. To evaluate the performance of the developed concrete polishing robot, extensive experiments including square trajectory tracking, automatic tool changing, actual polishing, and path generation simulation were performed.

Performance Analysis of Entropy-based Multi-Robot Cooperative Systems in a MANET

  • Kim, Sang-Chul;Shin, Kee-Hyun;Woo, Chong-Woo;Eom, Yun-Shick;Lee, Jae-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.722-730
    • /
    • 2008
  • This paper proposes two novel algorithms enabling mobile robots to cooperate with each other in a reliability-based system and a time-critical system. In the reliability-based cooperative system, the concepts of a mobile ad hoc network (MANET) and an object entropy are adopted in order to coordinate a specific task. A logical robot group is created based on the exchange of request and reply messages in a robot communication group whose organization depends on transmission range. In the time-critical cooperative system, relational entropy is used to define the relationship between mobile robots. A group leader is selected based on optimizing power consumption. The proposed algorithm has been verified based on the computer-based simulation and soccer robot experiment. The performance metrics are defined. The metrics include the number of messages needed to make a logical robot group and to obtain the relationship of robots and the power consumption to select a group leader. They are verified by simulation and experiment.

The Development of Trajectory Generation Algorithm of Palletizing Robot Considered to Time-variable Obstacles (변형 장애물을 고려한 최적 로봇 팔레타이징 경로 생성 알고리즘의 개발)

  • Yu, Seung-Nam;Lim, Sung-Jin;Kang, Maing-Kyu;Han, Chang-Soo;Kim, Sung-Rak
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.814-819
    • /
    • 2007
  • Palletizing task is well-known time consuming and laborious process in factory, hence automation is seriously required. To do this, artificial robot is generally used. These systems however, mostly user teaches the robot point to point and to avoid time-variable obstacle, robot is required to attach the vision camera. These system structures bring about inefficiency and additional cost. In this paper we propose task-oriented trajectory generation algorithm for palletizing. This algorithm based on $A^{*}$ algorithm and slice plane theory, and modify the object dealing method. As a result, we show the elapsed simulation time and compare with old method. This simulation algorithm can be used directly to the off-line palletizing simulator and raise the performance of robot palletizing simulator not using excessive motion area of robot to avoid adjacent components or vision system. Most of all, this algorithm can be used to low-level PC or portable teach pendent

  • PDF

Development of a 3D Printing System for Construction Using an Articulated Robot (다관절 로봇을 이용한 건설용 3D프린팅 출력시스템 개발)

  • Lee, Giryun;Nho, Hyunju;Jung, Namcheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.263-264
    • /
    • 2023
  • 3D printing technology is recognized as a core technology that will lead the next generation, and is a field that can have a large ripple effect if it innovates the existing construction production method. Therefore, this study deals with the development of a 3d printing system using an articulated robot for construction purposes. In this system, ABB robot was used to control the developed cement gun accurately. The system is composed of mixer to mix cementitious materials, pump to transfer the materials, abb robot to motion control and cement gun to extrude the materials to print required construction parts. Using the system developed in this study, a suitable mix ratio of cementitious materials was found and successively printed a 1m high structure that demonstrated possibility of printing structures using 3d printer. In the future, we plan to build a foundation for automated construction through research on construction methods and materials that can be continuously layered for the system.

  • PDF

A New Robotic 3D Inspection System of Automotive Screw Hole

  • Baeg, Moon-Hong;Baeg, Seung-Ho;Moon, Chan-Woo;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.740-745
    • /
    • 2008
  • This paper presents a new non-contact 3D robotic inspection system to measure the precise positions of screw and punch holes on a car body frame. The newly developed sensor consists of a CCD camera, two laser line generators and LED light. This lightweight sensor can be mounted on an industrial robot hand. An inspection algorithm and system that work with this sensor is presented. In performance evaluation tests, the measurement accuracy of this inspection system was about 200 ${\mu}m$, which is a sufficient accuracy in the automotive industry.

Development of a Transplanting Robot System for Tissue Culture Pants (II) - Machine Vision System - (조직배양체 이식로봇 시스템의 개발 (II) - 기계시각 시스템 -)

  • Lee, H. D.;Kim, K. D.;Kim, C. S.;Kim, J. P.;Jung, H.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 1999
  • This study aims at detecting the three dimensional gripping points for the transplanting robot system to grip in the process of developing transplanting robot system, which is one of the automation systems for transplanting tissue culture. The stereo vision system equipped with two cameras has been used to detect the gripping points of the plant stem. The method for matching the plants of the image information which came from two cameras was to measure the total numbers of pixels, leaves, and the heights of the plants. The gripping points were detected near the roots after extracting the stem parts by the standard deviation of the X axis according to the Y axis. The performance test of the developed program showed that the detecting errors of the gripping points were 0∼1mm for X axis and 1∼2mm for Y & Z axis. The mean running time of the program was about 3 seconds.

  • PDF

An Arc Sensor and Its Interface System for Welding Robots (용접로봇용 아크센서 및 인터페이스 시스템)

  • 오승준;김재웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • An arc sensor system to compensate positional errors was developed on the foundation of sensor interface system to make use of the on-line shift function of industrial welding robot. Investigating the on-line shift function, we examine the quantitative relationship between the deviation from programmed path and the correction data transferred from personal computer to robot controller. The number of input parameters for weld seam tracking can be reduced by making the relationship between the deviation and the correction data during half weaving be the function of only cross time. With the results of weld seam tracking for the butt joint with V-groove and fillet joint of sheet metal, good performance was implemented. By developing the sensor interface system to compensate the positional errors, industrial welding robot can be expected to contribute to the promotion of welding automation.

  • PDF

A Study on the Performance Evaluation System for the Construction Factory System Applied to High-Rise Building Construction in Korea (우리나라 초고층용(超高層用) 건설(建設)팩토리 개발(開發)을 위한 성능평가체계(性能評價體系)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Choi, Won-Jun;Kim, Chang-Kyu;Song, In-Shick;Lim, Sang-Chae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.105-108
    • /
    • 2007
  • This study aims to develop a performance evaluation system for the Construction Factory(CF). The CF is a kind of full automation system for building construction which consists of the lifting system for building materials, the built-up unit for steel structural components, the bolting robots, the control center for the site management, and the site covering system. The CF is developing now as a project of the construction automation and robotics. In this study we firstly reviewed the state-of-the-art of the construction automation and robotics in the foreign and the domestic, and investigated the precedent case of the CF such as the SMART System of Shimizu Co., Japan. We believe that without an objective evaluation of the results there won't be growth in technological R&D. Therefore, this study sees the developing CF as an new technology and method in building construction, and proposes the direction and frame of the appropriate evaluation which can be applied into the CF.

  • PDF

DEVELOPMENT OF DESIGN FOR AUTOMATION (DFA) BASED ON QUALITY FUNCTION DEPLOYMENT

  • Tae-Hoon Kim;Yoonseok Shin;Wi Sung Yoo;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1075-1080
    • /
    • 2009
  • Recently, the building construction industry has been forced to cope with lack of skilled labor. A robot-based construction automation system should help overcome crucial troubles which may be caused by this phenomenon. In particular, it is vital to propose design for automation (DFA). Quality function deployment (QFD) is applied a systematic aid in determining the design reflecting customer's needs. This study employs the QFD approach to plan the component designs of an effective automation process, and presents the development process of DFA with an illustrative project. As a result, the study identifies the developers' design requirements for automated construction and weights them by their importance indices.

  • PDF