• 제목/요약/키워드: Robot Aided Surgery

검색결과 3건 처리시간 0.022초

외고정법을 이용한 컴퓨터이용 및 로봇지원 골절수술 및 골변형교 정술에 대한 연구 (Research on Computer-aided and Robotic-assisted Surgery of Fracture Reduction and Bone Deformity Correction under External fixation)

  • 김윤혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2005
  • This paper presents a computer-aided simulation and robotic-assisted execution technology of external fixation method to achieve fracture reduction and deformity correction in long bones. Combining the kinematic analysis with a graphic model of the tibia and the fixator allowed 3D simulation and visualization of the adjustments required to reduce fracture or correct bone deformity as a pre-operative planning tool. The developed robot model provided accurate deformity correction with small residual deformity based on the results of the planning. By incorporating the robot model with image-guided system and computer-aided planning, the integrated system could be useful for computer-aided pre-operative planning and robotic-assisted execution in fracture treatment and bone deformity surgery.

  • PDF

복강경 수술을 위한 지능형 작동기의 제작 (Design of Dexterous Manipulator for MIS)

  • 송호석;정종하;이정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.823-828
    • /
    • 2004
  • Minimally Invasive Surgery (MIS) is surgery of the chest, abdomen, spine and pelvis, done with the aid of a viewing scope, and specially designed instruments. Benefits of minimally invasive surgery are less pain, less need for post-surgical pain medication, less scarring and less likelihood for incisional complications. Since the late 1980's, minimally invasive surgery has gained widespread acceptance because of the such advantages. However there are significant disadvantages which have, to date, limited the applications for these promising techniques. The reasons are limited degree-of-freedom, reduced dexterity and the lack of tactile feeling. To overcome such disadvantages many researchers have endeavored to develop robotic systems. Even though some robot aided systems achieved success and commercialized, there still remain many thing to be improved. In this paper, the robotic system which can mimic whole motions of a human arm by adding additional DOF is presented. The suggested design is expected to provide surgeons with improved dexterity during minimally invasive surgery.

  • PDF

척추 융합 수술을 위한 삼차원 척추경 모델을 이용한 자동 수술 계획 시스템 (Automated Surgical Planning System for Spinal Fusion Surgery with Three-Dimensional Pedicle Model)

  • 이종원;김성민;김영수;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.807-813
    • /
    • 2011
  • High precision of planning in the preoperative phase can contribute to increase operational safety during computer-aided spinal fusion surgery, which requires extreme caution on the part of the surgeon, due to the complexity and delicacy of the procedure. In this paper, an advanced preoperative planning framework for spinal fusion is presented. The framework is based on spinal pedicle data obtained from CT (Computed Tomography) images, and provides optimal insertion trajectories and pedicle screw sizes. The proposed approach begins with safety margin estimation for each potential insertion trajectory that passes through the pedicle volume, followed by procedures to collect a set of insertion trajectories that satisfy operation safety objectives. The radius of a pedicle screw was chosen as 70% of the pedicle radius. This framework has been tested on 68 spinal pedicles of 8 patients requiring spinal fusion. It was successfully applied, resulting in an average success rate of 100% and a final safety margin of $2.44{\pm}0.51mm$.