• Title/Summary/Keyword: Robot

Search Result 10,665, Processing Time 0.042 seconds

Monte-Carlo Simulation and measuring for Error Analysis of 3-axis SCARA Robot using Observability (관측성을 이용한 3축 SCARA Robot의 오차분석을 위한 Monte-Carlo simulation 및 측정)

  • Ju, Ji-Hun;Chung, Won-Jee;Kim, Jung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 2008
  • This paper aims at finding out dominant robot configurations with maximal position errors, which can be attributed to the parameter errors, by using Monte-Carlo simulation for error analysis of a 3-axis SCARA(Selective Compliance Assembly Robot Arm) type robot. In particular, the Monte-Carlo simulation is used for virtually measuring on the position errors, instead of physical measurement. In order to measure the observability of the model parameters with respect to a set of robot configurations, we propose the observability index which is defined as the product of singular values for error propagation matrices. Thus the index can be used for discriminating dominant robot configurations from a set of simulated ones in conjunction with standard deviation of positional errors, This paper analyzed error by robot positional error.

A study on an improvement of the robot motion control by the robot ergonomics (Robot Ergonomic에 의한 로보트의 동작제어 개선에 관한 연구)

  • 이순요;권규식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 1989
  • This study, as a part of integrated human-robot ergonomics, improves the robot motion control on the robot task in the TOES/WCS whose purpose is improving the teaching task constructed in the previous study. First, the updated combined fuzzy process using a new membership function with Weber's law is constructed for the purpose of coordinate reading of the end points in the macro motion control. Second, an algorithm using the geometric analysis is desinged in order to calculate position values and posture values of the robot joints. Third, the MGSLM method is designed to remove unnecessary the robot motion control caused by the GSLM method in the micro motion control. Consequently, proposed methods in this study lessen burdcn of a human of an improvement of the robot motion control and reduce the teaching time of a human operator and inaccuracy of the teaching task, which contribute to the integrated human-robot ergonomics.

  • PDF

Design and Development of a Monitoring System based on Smart Device for Service Robot Applications

  • Lee, Jun;Seo, Yong-Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.35-41
    • /
    • 2018
  • Smart device has become an affordable main computing resource for robotic ap-plications in accordance with a fast growth of mobile internet environment. Since the computing power of smart device has been increased, smart device based ro-bot system attempts to replace traditional robot applications with laptop-based system. Methodologies for acquisition of remote sensory information and control of various types of robots using smart device have been proposed recently. In this paper, we propose a robot control system using a monitoring program and a communication protocol. The proposed system is a combination of an educa-tional programming oriented robot named EPOR-S. as small service robot plat-form and a smart device. Through a simulation study using image processing, the feasibility of combination of the proposed robot monitoring program and control system was verified.

Formation Control of Mobile Robot for Moving Object Tracking (이동물체 추적을 위한 이동로봇의 대형제어)

  • Oh, Young-Suk;Lee, Chung-Ho;Park, Jong-Hun;Kim, Jin-Hwan;Huh, Uk-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.856-861
    • /
    • 2011
  • The mobile robot controller is designed to track the target and to maintain the formation at the same time. Formation control is included in mobile robot controller by extending the trajectory tracking algorithm. The dynamic model of mobile robot is used with kinematic model considering the practical physical parameters of mobile robot. The dynamic model of mobile robot transforms velocity control input of kinematic model into torque control input which is the practical control input of mobile robot. Formation controller of mobile robot is designed to satisfy Lyapunov stability by backstepping method. The designed formation controller is applied to the mobile robot for various target movements and simulated to confirm the Lyapunov stability.

A Ubiquitous Robot System (유비쿼터스 로봇 시스템)

  • 김종환;유지환;이강희;유범상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.7-14
    • /
    • 2004
  • In an upcoming ubiquitous era, humankind will live in a ubiquitous space, where everything is connected through communication network. In this ubiquitous space, a ubiquitous robot, which can be used by anyone for any service through any device and any network at anytime and anywhere in a u-space, is expected to be required to serve seamless and context-aware services to humankind. In this paper, we introduce the ubiquitous robot, and define three components of the ubiquitous robot. The first one is "SoBot" which can be connected through the network in anywhere with environment recognition function and communication ability with human. The second one is "EmBot" which is embedded into environments and mobile robots and has localization and certification function with sensor fusion. The last one is "Mobile Robot" which serves overall physical services. This paper also introduces KAIST ITRC-Intelligent Robot Research Center that pursues the implementation of the ubiquitous robot.

Ethical Review of Development and Service with Care Assistance Robot: Focusing on Transfer, Repositioning, Feeding, and Toileting Care Assistance Robot (돌봄보조 로봇의 개발과 서비스에 대한 윤리적 고찰: 이승, 자세변환, 식사, 배설 돌봄보조 로봇을 중심으로)

  • Bae, Young-Hyeon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • The purpose of this study is to ethical review on the development and service with care assistance robot. An integrative review concept analysis method was used. We analyzed the classification and role of service robots, the concept of the robot ethic and the care ethic. And there were derived the development and service about care assistance robot in ethical viewpoint. For improving current care problem, government had support to developing four types care assistance robots. But there were provided carefully care service due to the limitations of robot technology and lack of overall social awareness with care robot. In addition, in order to be successfully application in the field, care assistance robots were developed to provide high-quality care service that can consider to personal culture and living environment with the development of artificial intelligence and robot technology, as well as ethical care service.

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

AI baby mobile to prevent infant suffocation deaths (유아 질식사 예방 AI 아기 모빌)

  • Ye-Hun Jeong;Ji-Yeoing Cheon;Jeong-hwan Lee;Dong-Min kim;Do-Yoon Kim;Hyun-Don Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.992-993
    • /
    • 2023
  • 본 논문은 유아 질식사 사고를 예방하고 유아의 안전을 증진하기 위해 인공 지능(AI)을 활용한 아기 모빌의 개발과 적용에 관한 연구를 제시한다. 유아 뒤집기로 인한 사고는 아기의 안전에 심각한 위험을 초래하며, 이러한 사고를 예방하기 위한 새로운 접근 방식으로 AI 기술을 도입하는 것을 목표로 하였다. 본 연구에서는 AI 기술을 이용한 아기 모빌의 설계, 개발, 및 효과적인 적용 방안을 논의하며, 이를 통해 유아의 안전을 강화하고 부모들에게 편의성을 제공하는 방안을 제안했다.

Development Plan of Safety Management on Intelligent Robot (지능형 로봇에 대한 안전관리 발전방안)

  • Ju, Il-Yeop
    • Korean Security Journal
    • /
    • no.26
    • /
    • pp.89-119
    • /
    • 2011
  • The purpose of this study is to progress the development plan of safety management on the intelligent robot through safety analysis on the intelligent robot, major present condition of safety management on the intelligent robot, enforcement method of safety management on the intelligent robot. The following is the result of the study. First, we have to establish the provision or the special legislation to regulate the safety management of the intelligent robot substantially in the intelligent robot development and supply promotion law, the enforcement ordinance, the enforcement regulation. And, we should propel to establish the provision on the safety management of the intelligent robot in the laws related on ethics and safety. Second, we should establish the Robot Ethical Charter through the national and international agreement to give a guarantee against the safety management of the intelligent robot. Furthermore, we have to induces people's interest on the safety management of the intelligent robot through offering the public information of the Robot Ethical Charter for coexistence of human and robot and have to understand about rights of the intelligent robot. Third, the security industry and learned circles have to recognize the important effect that the intelligent robot gets in the security industry and try to grope the safety management and the application plan on the intelligent robot. Also, the security industry and learned circles should concern not only using and managing of the intelligent robot including the military robot, the security robot but also protecting human from the intelligent robot.

  • PDF

Development of Series Connectable Wheeled Robot Module (직렬연결이 가능한 소형 바퀴 로봇 모듈의 개발)

  • Kim, Na-Bin;Kim, Ye-Ji;Kim, Ji-Min;Hwang, Yun Mi;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.941-948
    • /
    • 2022
  • Disaster response robots are deployed to disaster sites where human access is difficult and dangerous. The disaster response robots explore the disaster sites prevent a structural collapse and perform lifesaving to minimize damage. It is difficult to operate robots in the disaster sites due to rough terrains where various obstacles are scattered, communication failures and invisible environments. In this paper, we developed a series connectable wheeled robot module. The series connectable wheeled robot module was developed into two types: an active driven robot module and a passive driven robot module. A wheeled robot was built by connecting the two active type robot modules and one passive type robot module. Two robot modules were connected by one DoF rotating joint, allowing the wheeled robot to avoid obstructions in a vertical direction. The wheeled robot performed driving and obstacle avoidance using only pressure sensors, which allows the wheeled robot operate in the invisible environment. An obstacle avoidance experiment was conducted to evaluate the performance of the wheeled robot consisting of two active driven wheeled robot modules and one passive driven wheeled robot module. The wheeled robot successfully avoided step-shaped obstacles with a maximum height of 80 mm in a time of 24.5 seconds using only a pressure sensors, which confirms that the wheeled robot possible to perform the driving and the obstacle avoidance in invisible environment.