• 제목/요약/키워드: Robot's finger

검색결과 45건 처리시간 0.023초

반복 학습기능을 이용한 로봇 매니퓰레이터의 파지력제어 (The Gripping Force Control of Robot Manipulator Using the Repeated Learning Function Techniques)

  • 김태관;백승학;김태수
    • 한국산업융합학회 논문집
    • /
    • 제18권1호
    • /
    • pp.45-52
    • /
    • 2015
  • In this paper, the repeated learning technique of neural network was used for gripping force control algorithm. The hybrid control system was introduced and the manipulator's finger reorganized form 2 ea to 3 ea for comfortable gripping. The data was obtained using the gripping force of repeated learning techniques. In the fucture, the adjustable gripping force will be obtained and improved the accuracy using the artificial intelligence techniques.

손바닥 동맥활에 관한 형태계측 연구 (Morphometric Study on the Arterial Palmar Arch of the Hand)

  • 박봉권;장수원;최승석;안희창
    • Archives of Plastic Surgery
    • /
    • 제36권6호
    • /
    • pp.691-701
    • /
    • 2009
  • Purpose: Deviations of arterial palmar arches in the hand can be explained on the embryological basis. The purpose of this study was to provide new information about palmar arches through cadaver's dissection. The values of the location and diameter in these vessels were analyzed in order to support anatomical research and clinical correlation in the hand. Methods: The present report is based on an analysis of dissections of fifty - three hands carried out in the laboratory of gross anatomy. A reference line was established on the distal wrist crease to serve as the X coordinate and a perpendicular line drawn through the midpoint between middle and ring fingers, which served as the Y coordinate. The coordinates of the x and y values were measured by a digimatic caliper, and statistically analyzed with Student's t - test. Results: Complete superficial palmar archs were seen in 96.2 % of specimens. In the most common type of males, the superficial arch was formed only by the ulnar artery. In the most common type of females, the superficial arch was formed anastomosis between the radial artery and the ulnar artery. The average length of the superficial and deep palmar arch is $110.3{\pm}33.0mm$ and $67.9{\pm}14.0mm$ respectively. Regarding the superficial palmar arch, ulnar artery starts $-16.1{\pm}5.1mm$ on X - line, and $2.5{\pm}24.5mm$ on Y - line. Radial artery appears on palmar side $7.7{\pm}3.2mm$ on X - line, and $20.9{\pm}10.9mm$ on Y - line. But radial artery starts on $6.3{\pm}3.6mm$ on X - line, and $3.4{\pm}5.1mm$ on Y - line. Digital arteries of superficial palmar arch starts on $6.1{\pm}3.7mm$, $33.9{\pm}8.8mm$ on index finger, $1.8{\pm}3.4mm$, $40.1{\pm}7.3mm$ on middle finger, $-3.2{\pm}4.9mm$, $42.6{\pm}7.0mm$ on ring finger, and $-8.9{\pm}5.1mm$, $42.5{\pm}80mm$ on little finger in respective X and Y coordinates. Radial artery of deep palmar arches measured at the palmar side perforating from the dorsum of hand. It's coordinates were $9.7{\pm}4.8mm$ on X - line, $21.7{\pm}10.2mm$ on Y - line. Ulnar artery was measured at hypothenar area, and it's coordinates were $-20.4{\pm}6.3mm$ on X - line, and $30.6{\pm}7.4mm$ on Y - line. Conclusions: Anatomically superficial palmar arch can be divided into a complete and an incomplete type. Each of them can be subdivided into 4 types. The deep palmar arch is less variable than the superficial palmar arch. We believe these values of the study will be used for the vascular surgery of the hand using the endoscope and robot in the future.

로봇 핸드 제어를 위한 센서 기반 손 동작 인식 (Sensor-based Recognition of Human's Hand Motion for Control of a Robotic Hand)

  • 황면중
    • 한국산학기술학회논문지
    • /
    • 제15권9호
    • /
    • pp.5440-5445
    • /
    • 2014
  • 사람의 생체 신호를 측정하여 로봇 제어에 이용하는 연구는 최근까지 활발히 진행되고 있다. 하지만 정확한 센서 정보를 위한 복잡한 신호 처리가 필요하고 고가의 시스템을 필요로 하는 단점이 있다. 본 논문에서는 저가의 EMG 센서와 Flex 센서로부터 측정된 신호를 이용하여 사람의 손 동작을 인식한 후 해당 움직임을 원격지의 로봇 핸드로 구현하는 것을 목표로 한다. MCU(Micro Controller Unit) 와 해당 센서들을 이용하여 실험적으로 사람의 손과 팔 부근의 3개의 센서 부착 위치를 결정하고 움직임에 따른 출력 신호와 실제 동작 사이의 구분 방법을 결정한다. 동작 인식 정확도를 높이기 위해 MCU의 아날로그 기준 전압에 따른 디지털 값 변화 실험 수행 후 기준 전압을 3.3V로 선정하였다. 손 동작을 구현하기 위해 4개의 손가락과 손목부분으로 구성된 링크 구조의 로봇 핸드를 설계한 후 제작하였다. 결과적으로 간단한 센서와 저가의 MCU를 활용하여 원격지의 로봇 핸드를 제어할 수 있음을 보였다.

발레에서 팔 기본 동작의 운동학적 특성 (The Kinematical Characteristics of the Basic Ballet Position)

  • 김은희
    • 한국운동역학회지
    • /
    • 제16권1호
    • /
    • pp.151-158
    • /
    • 2006
  • The purpose of this study was to find out the kinematical characteristics of arm's basic position in ballet. In order to achieve the purpose of the study, 3D cinematographic analysis was conducted with a ballerina who might performed the perfect arm's basic position. According to the results of this study, it was appeared that the shoulder kept about 78%-82%, the elbow kept about 62%-96%, the wrist kept 52%-109%, and finger kept 48%-110% with the height. Also, movement was formed with $21^{\circ}-77^{\circ}$ of the upper arm angle, $106^{\circ}-164^{\circ}$ of the elbow, $125^{\circ}-140^{\circ}$ of the wrist, and $83^{\circ}-160^{\circ}$ of the shoulder. The left-right ratio of the total arm angle was 98% in the first, second, and third position, and 100% in the forth position. The angle of arm gradient was remained $-68^{\circ}$ in the first position, $-27^{\circ}$ in the second position, $73^{\circ}$ in the third position, and $-11^{\circ}$ in the forth position. Based on the results mentioned above, balance and symmetry of both arms was an important factor in those four positions. Although it is impossible to maintain the position like robot, it may be a good performance if a certain level of extent was remained With respect to this point of view, it may be a good position if the difference between right and left arm in each joint can be remained within 2%. Angle also was an important factor that if the difference in total angle can be remained within 2% it may be an excellent position, there was difference of right and left based on the joint though. Therefore, practice and instruction to make a perfect symmetry as much as possible were needed Also, it would be a good movement if position and angle of joint within 2% difference of right and left arm can be remained In turn, because ballet is movement with expression of the body, beauty of the body and balance of the movement have to be harmonized for beautiful performance. Therefore, it would be a meaningful future study considering the body condition and movement of ballerina to define the beauty.

생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리 (Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device)

  • 이한욱;이주원;정원근;김성후;이건기
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.