• Title/Summary/Keyword: Roadwheel

Search Result 7, Processing Time 0.028 seconds

The Steering Characteristics of Military Tracked Vehicles with Considering Slippage of Roadwheel (로드휠의 슬립을 고려한 군용 궤도차량의 조향특성에 관한 연구)

  • Lim, Won-Sik;Yoon, Jae-Seop;Kang, Sang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.57-66
    • /
    • 2009
  • In this paper, the steering characteristics of tracked vehicles are studied for the improvement of steering performance. The important design factor of military vehicles is high mobility. It is influenced by weight of a vehicle, engine capacity, power-train, and steering system. The military vehicle, which is equipped with caterpillar, has unique steering characteristics and is quite different from that of a wheeled vehicle. The steering of tracked vehicles is operated in the power pack due to different speeds of both sprockets. Under cornering conditions, power split and power regeneration are happened in the power pack. In case of power regeneration, power is transferred outside track after adding engine power and power inputted inside track from the ground. However, excessive power regeneration is transferred in the power pack. It damages mechanical elements. Therefore, it is necessary to analyze the steering system and check mentioned problem above. In this study, the detailed dynamic model of steering system is presented, which includes slippage between track and roadwheel, inertia force, and inertia moment. Finally, our model is compared with the Kitano model and we verified the validity of the model.

Theoretical Prediction and Experimental Substantiation of Tractive performance of Off-Road Tracked Vehicles (로외에서 운용되는 궤도형차량의 견인성능에 관한 이론적 예측과 실험적 검증)

  • 박원엽;이규승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.248-257
    • /
    • 1999
  • A mathematical model was developed to investigate the mechanical interrelation between soil characteristics and main design factors of a tracked vehicles , and predict the tractive performance of the tracked vehicles. Based on the mathematical model, a computer simulation program(TPPMTV98) was developed in this study. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMTV98 with measured ones from traction tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%(d.b). The drawbar pulls measured by the TPPMTV98 were well matched to the measured ones. Such results implied that the model developed in this study could estimate the drawbar pulls well at various soil conditions , and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF

Development of Tractive Performance Prediction Model for Flexible Tracked Vehicles (연성 궤도형차량의 견인성능 예측 모델 개발)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.219-228
    • /
    • 1998
  • This study was conducted to develop the mathematical model and computer simulation program(TPPMTV98) for predicting the tractive performance of tracked vehicles. It takes into account major design parameters of the vehicle as well as the pressure-sinkage and shearing characteristics of the soil, and the response of the soil to repetitive loading. Structural analysis and numerical iterative method were used for the derivation of mathematical model. The simulatiom model TPPMTV98 can predict the ground pressure distribution and the shear stress under a track, the motion resistance, the tractive effort and the drawbar pull of the vehicles as functions of slip. Predicted tractive performance results obtained by the simulation model were validated by comparing the results firm the Wong's model, the offectiveness of Wong's model validated by many of the experiment. It was found that there is fairy close agreement between the prediction by TPPMTV98 and the results from Wong's model. The computer simulation model TPPMTV98 can be used for the optimization of tracked vehicle design or for the evaluation of vehicle candidates for a given mission and environment.

  • PDF

A Study on the Dynamic Characteristics of Hydropneumatic Suspension Unit Considering the Nonlinear Effects (비선형효과를 고려한 유기압현수장치의 동적 특성 연구)

  • Song, Oh-Seop;Park, Byung-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.747-756
    • /
    • 2007
  • The hydropneumatic suspension units, which have applied to the tracked vehicles, have the spring and damping function in the unit. The nonlinear characteristics such as roadwheel rotation effects, gas behavior changes, hydraulic damping characteristics, hysterisis, and frictional forces have been ignored or simplified to analyze the mathematical models in many areas. This study describes the dynamic characteristics and the nonlinear behaviors of hydropneumatic suspension unit considering the nonlinear effects such as the nonlinear spring and nonlinear damping through the simulation and the experiment. The utility of nonlinear analysis through the higher-order spectral analysis is also presented.

Separation Mode Analysis of Track Assembly of Main Battle Tank (궤도형 전투차량의 궤도박리 발생 및 성장모드 예측에 관한 연구)

  • Lee, Kyoung-Ho;Park, Byoung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • In this paper, we have proposed a simple finite element model for separation mode analysis on the roadwheel and track assembly of main battle tank and established a contact stress-based mechanism which could explain the initiation and growth of separation defect occurred during the test of padreplacable track. It was proved that the longitudinal contact shear stress component on the pin hole region of the track shoe body which is parallel to the driving direction is consistent with the crack initiation at the bonding surface between track shoe and wheel-side rubber. The longitudinal shear stress increased locally near the separated region after the separation initiated. So we could assume that the local stress concentration accelerates the separation growth according to the shear mode.

Prediction of Tractive Performance of Tracked Vehicles Using a Computer Simulation Model

  • Park, W.Y.;Chang, Y.C.;Lee, K.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.34-38
    • /
    • 2003
  • A mathematical model was developed for estimating the mechanical interrelation between characteristics of soil and main design factors of a tracked vehicle, and predicting the tractive performance of the tracked vehicle. Based on the mathematical model, a computer simulation program (TPPMTV) was developed in the study. The model considered the continuous change in tension for the whole track of a tracked vehicle, the analysis of shape and tension of the track segment between sprocket and first roadwheel, and the side thrust on both sides of grouser by the active earth pressure theory in predicting the tractive performance of a tracked vehicle. Also, the model contained not only sinkage depth of the track but the pressure distribution under the track in analyzing the side thrust. The effectiveness of the developed model was verified by performing the draw bar pull tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%. The predicted drawbar pulls by the model were well matched to the measured ones. Such results implied that the model developed in the study could estimate the drawbar pulls well at various soil conditions, and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF