• Title/Summary/Keyword: Road traffic noise

Search Result 294, Processing Time 0.021 seconds

A study on the standard for determining airborne sound insulation performance of sound barrier panels (방음판의 음향투과손실 측정규격에 관한 연구)

  • Oh, Yang Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.302-311
    • /
    • 2022
  • Sound barrier walls are one of the most effective alternatives for reducing environmental noise on roads and railways in the city center. The insertion loss of the sound barrier against road traffic noise is the sum of the sound transmission loss, sound absorption loss, and sound energy reduction due to the diffraction attenuation of the sound barrier. The sound transmission loss of the sound barrier is one of the important factors that determine the insertion loss of the sound barrier and is a basic indicator that determines the performance of the sound barrier. Nevertheless, there is not a separate standard in Korea for measuring the acoustic transmission loss of sound barrier panels. There are only a few conditions in KS F 4770 series that stipulates on the general material of sound barrier panels. This thesis examines the necessity of the acoustic transmission loss measurement and evaluation standards of sound barrier walls, and seeks a measurement method in a free sound field (anechoic chamber) sound receiving room considering the characteristics of sound barrier walls installed in external spaces, unlike indoor building materials. In addition, a single number evaluation method using a reference spectrum was proposed so that the sound insulation effect according to various installation places such as roadside or railroad side can be easily displayed.

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.

Implementation of a walking-aid light with machine vision-based pedestrian signal detection (머신비전 기반 보행신호등 검출 기능을 갖는 보행등 구현)

  • Jihun Koo;Juseong Lee;Hongrae Cho;Ho-Myoung An
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, we propose a machine vision-based pedestrian signal detection algorithm that operates efficiently even in computing resource-constrained environments. This algorithm demonstrates high efficiency within limited resources and is designed to minimize the impact of ambient lighting by sequentially applying HSV color space-based image processing, binarization, morphological operations, labeling, and other steps to address issues such as light glare. Particularly, this algorithm is structured in a relatively simple form to ensure smooth operation within embedded system environments, considering the limitations of computing resources. Consequently, it possesses a structure that operates reliably even in environments with low computing resources. Moreover, the proposed pedestrian signal system not only includes pedestrian signal detection capabilities but also incorporates IoT functionality, allowing wireless integration with a web server. This integration enables users to conveniently monitor and control the status of the signal system through the web server. Additionally, successful implementation has been achieved for effectively controlling 50W LED pedestrian signals. This proposed system aims to provide a rapid and efficient pedestrian signal detection and control system within resource-constrained environments, contemplating its potential applicability in real-world road scenarios. Anticipated contributions include fostering the establishment of safer and more intelligent traffic systems.

A study on the feasibility evaluation technique of urban utility tunnel by using quantitative indexes evaluation and benefit·cost analysis (정량적 지표평가와 비용·편익 분석을 활용한 도심지 공동구의 타당성 평가기법 연구)

  • Lee, Seong-Won;Chung, Jee-Seung;Na, Gwi-Tae;Bang, Myung-Seok;Lee, Joung-Bae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.61-77
    • /
    • 2019
  • If a new utility tunnel is planned for high density existing urban areas in Korea, a rational decision-making process such as the determination of optimum design capacity by using the feasibility evaluation system based on quantitative evaluation indexes and the economic evaluation is needed. Thus, the previous study presented the important weight of individual higher-level indexes (3 items) and sub-indexes (16 items) through a hierarchy analysis (AHP) for quantitative evaluation index items, considering the characteristics of each urban type. In addition, an economic evaluation method was proposed considering 10 benefit items and 8 cost items by adding 3 new items, including the effects of traffic accidents, noise reduction and socio-economic losses, to the existing items for the benefit cost analysis suitable for urban utility tunnels. This study presented a quantitative feasibility evaluation method using the important weight of 16 sub-index items such as the road management sector, public facilities sector and urban environment sector. Afterwards, the results of quantitative feasibility and economic evaluation were compared and analyzed in 123 main road sections of the Seoul. In addition, a comprehensive evaluation method was proposed by the combination of the two evaluation results. The design capacity optimization program, which will be developed by programming the logic of the quantitative feasibility and economic evaluation system presented in this study, will be utilized in the planning and design phases of urban community zones and will ultimately contribute to the vitalization of urban utility tunnels.