• Title/Summary/Keyword: Road surface condition

Search Result 166, Processing Time 0.042 seconds

An Experimental Study of Tire-Road Friction Coefficient by Transient Brake Time (실차 실험을 통한 제동순시간에 의한 타이어-노면마찰계수에 관한 연구)

  • Han, Chang-Pyoung;Park, Kyoung-Suk;Choi, Myung-Jin;Lee, Jong-Sang;Shin, Un-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.7 s.196
    • /
    • pp.106-111
    • /
    • 2007
  • In this paper, the transient brake time was studied on the van type vehicle with accelerometer. Experiments were carried out on the asphalt(new and polished), unpacked road(earth and gravel) and on wet or dry road conditions. The transient brake time is not effected bzy the vehicle speed. The transient brake time is about 0.41$\sim$0.43second on the asphalt road surface and the error range is within 0.1$\sim$0.16second. For the asphalt road condition, the transient brake time is not effected by both new asphalt road surface and the polished asphalt road surface. With compared by dry and wet road surface condition, the transient brake time of wet condition is longer than dry road condition and compared with unpacked road condition and packed road condition, unpacked road condition is shorter than packed road condition. It is considered that the transient brake time is effected by the road surface fraction coefficient. In other words, the transients brake time increases as friction coefficient decreases.

A Development of Stereo Camera based on Mobile Road Surface Condition Detection System (스테레오카메라 기반 이동식 노면정보 검지시스템 개발에 관한 연구)

  • Kim, Jonghoon;Kim, Youngmin;Baik, Namcheol;Won, Jaemoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.177-185
    • /
    • 2013
  • PURPOSES : This study attempts to design and establish the road surface condition detection system by using the image processing that is expected to help implement the low-cost and high-efficiency road information detection system by examining technology trends in the field of road surface condition information detection and related case studies. METHODS : Adapted visual information collecting method(setting a stereo camera outside of the vehicle) and visual information algorithm(transform a Wavelet Transform, using the K-means clustering) Experiments and Analysis on Real-road, just as four states(Dry, Wet, Snow, Ice). RESULTS : Test results showed that detection rate of 95% or more was found under the wet road surface, and the detection rate of 85% or more in snowy road surface. However, the low detection rate of 30% was found under the icy road surface. CONCLUSIONS : As a method to improve the detection rate of the mobile road surface condition information detection system developed in this study, more accurate phase analysis in the image processing process was needed. If periodic synchronization through automatic settings of the camera according to weather or ambient light was not made at the time of image acquisition, a significant change in the values of polarization coefficients occurs.

Estimation of Road Surface Condition and Tilt Angle to Improve the Safety of Mobility Aids for the Elderly (노인용 보행보조기의 안전성 향상을 위한 노면 상태 및 기울기 추정)

  • Park, Gi-Dong;Kim, Jong-Hwa;Choi, Jin-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.3
    • /
    • pp.149-155
    • /
    • 2022
  • This paper proposes a method for estimating the road surface condition and tilt angle using an inertial measurement unit (IMU) to improve the safety in the use of mobility aids for the elderly. The measurements of the accelerometers of the IMU usually include the accelerations caused by not only the gravitational force but also linear and rotational motions. Thus, the gravitational accelerations are first extracted using several physical constraints and then incorporated into the Kalman filter to estimate the tilt angle. In addition, because the magnitudes of the accelerations produced by the rotational motions (roll and pitch motions) vary with the road surface condition, a criterion based on such accelerations is presented to classify the condition of the road surface. The obtained road surface condition and tilt angle are finally combined to provide the safety information (e.g., safe, warning, and danger) for the user to improve the walking safety. Experiments were carried out and the results showed that the proposed method can provide the condition of the road surface, the tilt of the road surface, and the safety information correctly.

A Study on the Analysis of Safe Driving Behavior on Curve Section by Curve Radius and Road Surface Condition (곡선반경과 노면상태에 따른 곡선구간 안전주행 행태분석)

  • Kim, Keun-Hyuk;Lim, Joon-Bum;Lee, Soo-Beom;Kim, Joo-Hee;Kim, Sun-Mi
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.211-218
    • /
    • 2012
  • Two experiment are planed to identify driver's safe driving behaviour by curve radius, road surface condition in curve section. At four-lane and two-lane road, conducted experiments are check on driver's feeling of safety that 30 subjects do not feel discomfort. And using the data from these experiments, this study compare physical speed (not slipping, fall our of the road) with safety driving speed(drivers felt a comfortable and safe speed) each curve radius and fiver road surface condition(drying, wet, rain, snow and ice). As a result, safe driving behaviour factors that are derived to curve radius of 100m units, five road surface conditions enable to represent quantitative analysis of driver's discomfort. This study will develop road design method and evaluation reflected ergonomic aspects.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

Analysis of Fatigue Damage of the parts around the vehicle engine with Respect to Road surface conditions (도로 노면 조건을 고려한 차량 엔진 주변 부품의 피로손상도 분석)

  • Shin, Sung-Young;Kim, Chan-Jung;Lee, Bong-Hyeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.581-586
    • /
    • 2014
  • In general vibration test considers both harmonic vibration and random vibration, When developing the vehicle component. But the effect of harmonic vibration is larger in the parts around the vehicle engine, sole testing the harmonic vibration is considered. In this study, the fatigue damage of the linear system fixed around the engine is analyzed when the effect of random vibration is higher, harsher than the normal road surface condition. In condition the vehicle speed and the engine RPM are similar, the higher the harshness of the road surface condition is, the larger the fatigue damage level is. Therefore both random vibration and harmonic vibration must be considered in vibration test of components around the engine. Proposing the sine on random(SOR) vibration test that can exam considering both of vibrations, harmonic and random.

  • PDF

A study on road ice prediction by applying road freezing evaluation model (도로 노면결빙 판정모델을 적용한 도로결빙 예측에 대한 연구)

  • Lim, Hee-Seob;Kim, Sang-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1507-1516
    • /
    • 2020
  • This study analyzed the scenario for road freezing section by applying the road freezing evaluation algorithm. To apply road freezing algorithm, the influencing factors on road freezing were reviewed. Observation data from four points, Mokgam IC, Jeongneung tunnel, Seongsan bridge, and Yeomchang bridge were used for analysis. All observatories are installed on the expressway, and they are classified for the analysis of road freezing characteristics. When the difference between the road surface temperature and dew-point temperature of the road freezing evaluation algorithm was 3℃ or less, the section where road freezing occurred was checked. In addition, road freezing evaluation was derived through the change of the road surface condition and water film thickness of the freezing section.

Predicting Surface Runoff and Soil Erosion from an Unpaved Forest Road Using Rainfall Simulation (인공강우실험에 의한 임도노면의 지표유출량 및 토양유실량 평가)

  • Eu, Song;Li, Qiwen;Lee, Eun Jai;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.3
    • /
    • pp.13-22
    • /
    • 2015
  • Unpaved forest roads are common accessways in mountain areas being used for forestry purposes. The presence of forest roads produces large volumes of surface runoff and sediment yield due to changes in soil properties and hillslope profile. Rainfall simulation experiments were conducted to estimate the impacts of above-ground vegetation and antecedent soil water condition on hydrology and sediment processes. A total of 9 small plots($1m{\times}0.5m$) were installed to represent different road surface conditions: no-vegetation(3 plots), vegetated surface(3 plots), and cleared vegetation surface(3 plots). Experiments were carried out on dry, wet, and very wet soil moisture conditions for each plot. Above ground parts of vegetation on road surface influenced significantly on surface runoff. Runoff from no-vegetation roads(39.24L) was greater than that from vegetated(25.05L), while cleared-vegetation condition is similar to no-vegetation roads(39.72L). Runoff rate responded in a similar way to runoff volume. Soil erosion was also controlled by land cover, but the magnitude is little than that of surface runoff. Even though slight differences among antecedent soil moisture conditions were found on both runoff and soil erosion, runoff rate and soil losses were increased in very wet condition, followed by wet condition. The experiments suggest that vegetation cover on forest road surface seems most effective way to reduce surface runoff and soil erosion during storm periods.

Dynamic behaviour of high-sided road vehicles subject to a sudden crosswind gust

  • Xu, Y.L.;Guo, W.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.325-346
    • /
    • 2003
  • High-sided road vehicles are susceptible to a sharp-edged crosswind gust, which may cause vehicle accidents such as overturning, excessive sideslip, or exaggerated rotation. This paper thus investigates the dynamic behaviour and possible accidents of high-sided road vehicles entering a sharp-edged crosswind gust with road surface roughness and vehicle suspension included. The high-sided road vehicle is modelled as a combination of several rigid bodies connected by a series of springs and dampers in both vertical and lateral directions. The random roughness of road surface is generated from power spectral density functions for various road conditions. The empirical formulae derived from wind tunnel test results are employed to determine aerodynamic forces and moments acting on the vehicle. After the governing equations of motion are established, an extensive computation work is performed to examine the effects of road surface roughness and vehicle suspension on the dynamic behaviour and vehicle accidents. It is demonstrated that for the high-sided road vehicle and wind forces specified in the computation, the accident vehicle speed of the road vehicle running on the road of average condition is relatively smaller than that running on the road of very good condition for a given crosswind gust. The vehicle suspension system should be taken into consideration, and the accident vehicle speed becomes smaller if the vehicle suspension system has softer springs and lighter dampers.

Searching for Traffic Accident using PDA (PDA를 이용한 교통사고 검색)

  • Nam, Sang-Yep;Hong, You-Sik;Kim, Chun-Sik;Hong, Ma-Ri-A
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1231-1234
    • /
    • 2005
  • For the purpose of objective and scientific inspection, traffic accidents should be appraised and inspected by righteous material evidences, computer simulation, and studies such as automobile engineering, traveling and collision accident dynamics, road and traffic engineering. In this paper, it displays the results of studying cases with the reasons of traffic accidents by analyzing and studying automobile kinetics, real traffic accidents and the results of in scientific and objective ways. In this paper, it is proved that with compared by dry and wet road surface condition, the transient brake time of wet condition is longer than dry road condition. Moreover, compared with unpacked road condition and packed road condition. unpacked road condition is shorter than packed road condition using computer simulation.

  • PDF