• Title/Summary/Keyword: Road subsoil

Search Result 5, Processing Time 0.022 seconds

Heavy Metal Contents of Soil and Pear Tree near a Major Road (도로변 배나무 과수원 토양과 수체의 중금속 함량)

  • Jeon, Byung-Doo;Choi, Jong-Seung
    • The Journal of Natural Sciences
    • /
    • v.19 no.1
    • /
    • pp.65-75
    • /
    • 2008
  • This research was conducted to determine heavy metal contents of soil and tree in pear orchard located near national road with heavy traffics. Topsoil (0-15 cm depth) and subsoil (15-30 cm) samples in pear orchard located within 40 m from national road had higher Pb, Cu, and Zn contents than background orchard (BG) and these heavy metal contents decreased with distance from road. Topsoil samples taken at 10 m from national road had 4 times higher level in Pb, 3 times in Cu, and 2.5 times in Zn compare to BG. The Cd contents of topsoil in orchard were higher than those of BG but were not in subsoil. Highest heavy metal contents of pear leaves in roadside orchard were 20.08 in Pb, 7.02 in Cu, 30.83 in Zn, and $1.68\;mm.kg^{-1}$ in Cd and these heavy metal contents in roadside orchard were higher than BG. Cd contents of fruit and Pb contents of fruit stalk in roadside orchard were higher than BG and these heavy metal contents decreased with distance up to 40 m from the road.

  • PDF

A Pilot Test for the Utilization of Road Subsoil of the Tertiary Mudstone in Pohang Basin (포항분지 제3기 이암의 도로 노체 활용을 위한 현장시험)

  • Gong, Jeong-Sik;Baek, In-Woo;Kim, Jae-Gon;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to present the possibility a utilization of the tertiary mudstone in Pohang as road subsoil material through pilot experiments on the road embankment structure. This mudstone is an unconsolidated rock that is distributed in the soft rock sedimentary layer, the tertiary layer of the Cenozoic, and causes physical problems such as slaking, swelling, and reduced shear strength and chemical problem like acid drainage. In order to solve various complex problems, an laboratory mixing test was conducted, and the optimal mixing conditions of the tertiary mudstone (90%), composite slag (steel making 70%, blast furnace 30%), and neutralization and coating agent treatment were derived. In order to prove its utilization, a real-scale road embankment structure was constructed and tests were conducted for each section. The pre-processing section is stable due to the design of optimal mixing conditions, while in post-processing section, natural weathering proceeded rapidly, and structural problems were concerned. Since the effect of neutralizing and coating agents was confirmed in temporary-staking section, the neutralizing and coating agents can be applied during the temporary storage period.

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

Bearing Capacity Reinforcing Effect of Forest Road Surface by Construction of Sub-base using Geosynthetics (토목섬유 활용 노반 조성을 통한 임도 노면지지력 강화효과 분석)

  • Hwang, Jin-Seong;Ji, Byoung-Yun;Lee, Kwan-Hee;Kweon, Hyeong-Keun;Kim, Myung-Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.166-173
    • /
    • 2018
  • This study was carried out to establish the standard of sub-base facility which can strengthen road surface bearing capacity for smooth passage of logging trucks in forest road as the size of the logging truck has been increased in order to improve the efficiency of timber transportation. The results of reinforcement effect analysis of the surface bearing capacity by the thickness of sub-base prepared with the optimum aggregate mix ratio using geosynthetics for forest road on the soft ground in the Forest Technology and Management Research Center are as follows. The surface bearing capacity of CBR exceeding 15% was found to be sufficient when the sub-base was constructed over 0.2 m depth of laying gravels with installation of geosynthetics after digging out subsoil. However, there is no significant difference in reinforcement effect of surface bearing capacity by types of geosynthetics. And, it was found that the surface bearing capacity was insufficient in the installation of sub-base. Therefore, in the case of soft ground, It is possible to secure the reinforcement of the surface bearing capacity for the smooth passage of heavy logging trucks by sub-base, that was constructed over 0.2 m depth of laying gravels with installation of geosynthetics after digging out subsoil.

Cause of Rall Road Slope Failure and Determination of Soil Strength for Remedy (철도사면파괴 원인 및 대책공법 적용을 위한 강도정수 결정)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.25-31
    • /
    • 2004
  • Rail road slope can be fatted because of existence of unexpected soft subsoil. Purpose of this study is verifying the cause of rail road slope failure and determination of soil strength for remedy. Drilling some boreholes, cone penetration test and field vane test were executed in order to find out the cause of slope failure. In addition, laboratory test was conducted in order to determine soil strength of soft soil sampled as undisturbed state. As a result of both the in-situ and the laboratory tests, the cause of slope failure is thought to be propagation of failure zone by progressive rupture of overconsolidated clay Soft soil strength was determined through back analysis of the failed slope.