• Title/Summary/Keyword: Road simulator

Search Result 194, Processing Time 0.023 seconds

Driving Performance Evaluation Using Foot Operated Steering System in the Virtual Driving Simulator (가상 운전 시뮬레이터를 이용한 족동 조향 시스템의 운전 성능 평가)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of normal subjects for controlling the steering wheel by using foot operated steering devices in the driving simulator. Many people with complete bilateral loss or loss of use of upper limbs but with normal lower limbs are frequently left without use and/ or control of their hands, arms, or the upper extremities of their bodies. As a result, persons disabled in this manner have problems in operation an automobile because they cannot grasp and manipulate a conventional steering wheel. Therefore, if foot operated steering devices are used for controlling the vehicle on in people with disabilities, the disabled people could improve their community mobility by driving a car safely. Ten normal subjects were involved in this research to evaluate steering performance by using three types of steering devices(conventional steering wheel, pedal type foot steering, circular type foot steering) in driving simulator. STISim Drive 3 program was used for testing the driving performance in two road scenarios: straight road and curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA to compare the influences of two factors(type of foot steering device and road scenario) in the three dependent variables of steering performance(standard deviation of lateral position, the lateral position of vehicle and the number of line crossing). The average values of the three dependent variables(standard deviation of lateral position, lateral position and the number of line crossing) of driving performance were significantly smaller for conventional steering wheel or pedal type foot steering than circular type foot steering.

Modeling of Roads for Vehicle Simulator Using GIS Map Data

  • Im Hyung-Eun;Sung Won-Suk;Hwang Won-Gul;Ichiro Kageyama
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.3-7
    • /
    • 2005
  • Recently, vehicle simulators are widely used to evaluate driver s responses and driver assistance systems. It needs much effort to construct the virtual driving environment for a vehicle simulator. In this study, it is described how to make effectively the roads and the driving environment for a vehicle simulator. GIS (Geographic Information System) is used to construct the roads and the environment effectively. Because the GIS is the integrated system of geographical data, it contains useful data to make virtual driving environment. First, boundaries and centerlines of roads are extracted from the GIS. From boundaries, the road width is calculated. Using centerlines, mesh models of roads are constructed. The final graphic model of roads is constructed by mapping road images to those mesh models considering the number of lanes and the kind of surface. Data of buildings from the GIS are extracted. Each shape and height of building is determined considering the kind of building to construct the final graphic model of buildings. Then, the graphic model of roadside trees is constructed to decide their locations. Finally, the driving environment for driving simulator is constructed by converting the three graphic models with the graphic format of Direct-X and by joining the three graphic models.

Assessment of the Drivers Sensibility due to the Changes on Speed and Driving Mode of a Vehicle in a Dynamic Simulator (동적 시뮬레이터에서 속도와 운전 형태 변화에 따른 운전자의 감성 평가)

  • 정순철;민병찬;신미경;김철중
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.51-63
    • /
    • 2001
  • The present experiment investigated the possibility of evaluating of the human sensibility contingent on the speed and modes of driving using the responses from the autonomic nervous system, subjective assessments, Simulator Sickness (55) in dynamic simulator. The three conditions of the speed of driving were 40 $\pm$ 10 km/h, 100$\pm$10 km/h, 160 $\pm$ 10 km/h, and the participant was instructed to drive the car for three minutes on the elliptical track. It is programed in such a way that the modes of driving can be changed smoothly using road DB in Dynamic Simulator, and for signifying the change of the condition the road signs were used. The instruction was given to the participant to drive the car on the fixed speed of 20 km/h for 30 seconds, then to drive the car on sudden-start mode of driving from the 20 km/h to 160 km/h within 10 seconds. For the sudden-stop mode of driving, it was instructed that stop the car from the speed of 160km/h to 20km/h within 10 seconds when the subject see the road sign, then drive the car at the fixed speed of 20 km/h for 30 seconds. The results of the subjcetive assessment showed that the level of pleasantness and the tension was increased, and physiological response showed that the level of activity of the autonomic responses were also increased as the speed of the car increased. Also, for results on the driving modes showed that the level of pleasantness was highest for the sudden-stop, next highest was sudden-start, and the lowest was 20 km/h fixed speed condition for the subjective assessment, and tile order of the level of activation of the autonomic nervous system showed the same results as above. From the results of the present study it was concluded that the presentation and evaluation of the stimulus for the human sensitivity is possible in dynamic simulator.

  • PDF

Development and Usability Evaluation of Fixed-base AHS Simulator

  • Cha, Doo-Won;Park, Peom
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.57-62
    • /
    • 2002
  • This study described the specification and configuration of developed fixed-base AHS (Automated Highway System) simulator fur the human factors researches, and its usability evaluation results after riding 120, 140, and 160kph automated driving speed. As the results, this study suggested the subjects' preferences and opinions about simulator and AHS configurations that would help to establish the AHS R&D plan and driver-vehicle/road interface design guidelines as the basic researches of the AHS human factors.

  • PDF

A Study on In-wheel Motor Control to Improve Vehicle Stability Using Human-in-the-Loop Simulation

  • Ko, Sung-Yeon;Ko, Ji-Weon;Lee, Sang-Moon;Cheon, Jae-Seung;Kim, Hyun-Soo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.536-545
    • /
    • 2013
  • In this study, an integrated motor control algorithm for an in-wheel electric vehicle is suggested. It consists of slip control that controls the in-wheel motor torque using the road friction coefficient and slip ratio; yaw rate control that controls the in-wheel motor torque according to the road friction coefficient and the yaw rate error; and velocity control that controls the vehicle velocity by a weight factor based on the road friction coefficient and the yaw rate error. A co-simulator was developed, which combined the vehicle performance simulator based on MATLAB/Simulink and the vehicle model of CarSim. Based on the co-simulator, a human-in-the-loop simulation environment was constructed, in which a driver can directly control the steering wheel, the accelerator pedal, and the brake pedal in real time. The performance of the integrated motor control algorithm for the in-wheel electric vehicle was evaluated through human-in-the-loop simulations.

The Simulator Study on Driving Safety while Driving through the Longitudinal Tunnel (차량시뮬레이터를 이용한 장대터널 주행안전성 연구)

  • Ryu, Jun-Beom;Sihn, Yong-Kyun;Park, Sung-Jin;Han, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.149-156
    • /
    • 2011
  • Considerable evaluation is needed to design a new longitudinal tunnel in advance because it damaged drivers' driving safety and heightened the possibility of traffic accidents with its physical characteristics. Specifically, considering traffic psychological and ergonomic factors was very important to prevent the difficulty of maintaining safe speed, the increase of the drowsy driving, the fatality of traffic accidents, and subjective feelings such as anxiety while driving a car through the tunnel, from design to construction. This study dealt with driving safety evaluation of an original road alignment design for the longitudinal tunnel (length: above 10km) with a driving simulator, and helped us to improve an original road alignment design and make an alternative road alignment design with presenting risky districts. The results of experiment showed that inflection points were revealed more risky districts, because they impaired driving safety and elevated driver workload while driving a car through around the inflection points of two-way route. Finally, the limitations and implications of this study were discussed.

A study of Drivers' Behaviors using a Driving Simulator(with Special Reference of Driving Anger and Traffic Congestion (차량 시뮬레이터를 이용한 운전행동 연구(운전분노 및 교통정체를 중심으로))

  • Song, Hye-Su;Sin, Yong-Gyun;Gang, Su-Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.2
    • /
    • pp.61-74
    • /
    • 2005
  • This study is to investigate the effects of driving anger and traffic congestion on drivers' behaviors. Driving anger is the propensity to become angry while driving, and people differ in the tendency to get angry when encountering frustration and provocation on the road. Individual differences of the propensity contribute to anger on the road and aggressive driving leading traffic vaiolations and accidents. In the experiment three traffic conditions (an open road condition, a bumper-to-bumper traffic condition and a being stuck behind a slower driver condition) were simulated and driving behaviors were collected with RTSA-DS(Road Traffic Safety Authority-Driving Simulator). The results were as follows: Most of high anger drives drove at higher speeds in an open road condition, and in the bumper-to-bumper condition they drove faster and had an higher crash rate, which suggests they did aggressive driving, and risky and unsafe behaviors.

Cognitive Model-based Evaluation of Traffic Simulation Model (교통 시뮬레이션 모텔의 인지공학적 평가에 관한 연구)

  • 강명호;차우창
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.163-168
    • /
    • 2002
  • The road sign in dynamic traffic system is an important element which affects on human cognitive performance on driving. Web-based vision system simulator was developed to examine the cognition time of the road sign in dynamic environment. This experiment was designed in within-subject design with two factors; vehicle speed and the amount of information of the traffic sign. It measured the cognition time of the road sign through two evaluation methods; the subjective test with vision system simulator and computational cognitive model. In these two evaluations of human cognitive performance under the dynamic traffic environment, it demonstrated that subject's cognition time was affected by both the amount of information of traffic sign and driving speed.

  • PDF