• 제목/요약/키워드: Road scene semantic segmentation

검색결과 2건 처리시간 0.018초

Saliency-Assisted Collaborative Learning Network for Road Scene Semantic Segmentation

  • Haifeng Sima;Yushuang Xu;Minmin Du;Meng Gao;Jing Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.861-880
    • /
    • 2023
  • Semantic segmentation of road scene is the key technology of autonomous driving, and the improvement of convolutional neural network architecture promotes the improvement of model segmentation performance. The existing convolutional neural network has the simplification of learning knowledge and the complexity of the model. To address this issue, we proposed a road scene semantic segmentation algorithm based on multi-task collaborative learning. Firstly, a depthwise separable convolution atrous spatial pyramid pooling is proposed to reduce model complexity. Secondly, a collaborative learning framework is proposed involved with saliency detection, and the joint loss function is defined using homoscedastic uncertainty to meet the new learning model. Experiments are conducted on the road and nature scenes datasets. The proposed method achieves 70.94% and 64.90% mIoU on Cityscapes and PASCAL VOC 2012 datasets, respectively. Qualitatively, Compared to methods with excellent performance, the method proposed in this paper has significant advantages in the segmentation of fine targets and boundaries.

사전위치정보를 이용한 도심 영상의 의미론적 분할 (Semantic Segmentation of Urban Scenes Using Location Prior Information)

  • 왕정현;김진환
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.249-257
    • /
    • 2017
  • This paper proposes a method to segment urban scenes semantically based on location prior information. Since major scene elements in urban environments such as roads, buildings, and vehicles are often located at specific locations, using the location prior information of these elements can improve the segmentation performance. The location priors are defined in special 2D coordinates, referred to as road-normal coordinates, which are perpendicular to the orientation of the road. With the help of depth information to each element, all the possible pixels in the image are projected into these coordinates and the learned prior information is applied to those pixels. The proposed location prior can be modeled by defining a unary potential of a conditional random field (CRF) as a sum of two sub-potentials: an appearance feature-based potential and a location potential. The proposed method was validated using publicly available KITTI dataset, which has urban images and corresponding 3D depth measurements.