• Title/Summary/Keyword: Road hazardous information

Search Result 15, Processing Time 0.025 seconds

Integration and Decision Algorithm for Location-Based Road Hazardous Data Collected by Probe Vehicles (프로브 수집 위치기반 도로위험정보 통합 및 판단 알고리즘)

  • Chae, Chandle;Sim, HyeonJeong;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.173-184
    • /
    • 2018
  • As the portable traffic information collection system using probe vehicles spreads, it is becoming possible to collect road hazard information such as portholes, falling objects, and road surface freezing using in-vehicle sensors in addition to existing traffic information. In this study, we developed a integration and decision algorithm that integrates time and space in real time when multiple probe vehicles detect events such as road hazard information based on GPS coordinates. The core function of the algorithm is to determine whether the road hazard information generated at a specific point is the same point from the result of detecting multiple GPS probes with different GPS coordinates, Generating the data, (3) continuously determining whether the generated event data is valid, and (4) ending the event when the road hazard situation ends. For this purpose, the road risk information collected by the probe vehicle was processed in real time to achieve the conditional probability, and the validity of the event was verified by continuously updating the road risk information collected by the probe vehicle. It is considered that the developed hybrid processing algorithm can be applied to probe-based traffic information collection and event information processing such as C-ITS and autonomous driving car in the future.

Integrated Assessment for Commercialization of Road Hazardous Information Colleted by Commercial Vehicles (사업용 차량 기반 도로위험정보 제공의 상용화를 위한 통합 평가)

  • Yoo, Kyung-su;Chung, Kyungmin;Chae, Chandle
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.30-42
    • /
    • 2021
  • The amount of compensation and the number of cases owing to car damage from pot holes on highways across the country increased by about 4.2 times and 3.5 times, respectively, in 2019 compared to 2015. Due to the increase in damage caused by these road hazards, the Ministry of Land, Infrastructure and Transport is developing technologies and services that can collect road hazard information by using devices on commercial vehicles (DTGs, black boxes, ADASs). In preparation for the development of these technologies, this study conducted an integrated assessment of algorithms developed for interrupted-flow and uninterrupted-flow traffic under three scenarios in order to provide road hazard information to drivers and road managers. As a result, the overall accuracy of the integrated assessment was derived at 81.88%. Errors generated in this integrated assessment reflect only missing data in less than 1 minute, GPS coordinate location and algorithm related errors, taking into account the purpose and assumptions of the assessment. Among them, we derive an accuracy of 90.15%overall by calibrating GPS error data. The results of this study can be used as basic data for improving the accuracy of location-based information collected by commercial vehicles and for policy development.

A Study on the Method for Managing Hazard Factors to Support Operation of Automated Driving Vehicles on Road Infrastructure (자율주행시스템 운행지원을 위한 도로 인프라 측면의 위험 요소 관리 방안)

  • Kim, Kyuok;Choi, Jung Min;Cho, Sun A
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.62-73
    • /
    • 2022
  • As the competition among the autonomous vehicle (AV, here after) developers are getting fierce, Korean government has been supporting developers by deregulating safety standards and providing financial subsidies. Recently, some OEMs announced their plans to market Lv3 and Lv4 automated driving systems. However, these market changes raised concern among public road management sectors for monitoring road conditions and alleviating hazardous conditions for AVs and human drivers. In this regards, the authors proposed a methodology for monitoring road infrastructure to identify hazardous factors for AVs and categorizing the hazards based on their level of impact. To evaluate the degrees of the harm on AVs, the authors suggested a methodology for managing road hazard factors based on vehicle performance features including vehicle body, sensors, and algorithms. Furthermore, they proposed a method providing AVs and road management authorities with potential risk information on road by delivering them on the monitoring map with node and link structure.

Development of an Evaluation Index for Identifying Freeway Traffic Safety Based on Integrating RWIS and VDS Data (기상 및 교통 자료를 이용한 교통류 안전성 판단 지표 개발)

  • Park, Hyunjin;Joo, Shinhye;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.441-451
    • /
    • 2014
  • This study proposes a novel performance measure, which is referred to as Hazardous Spacing Index (HSI), to be used for evaluating safety of traffic stream on freeways. The basic principle of the proposed methodology is to investigate whether drivers would have sufficient stopping sight distance (SSD) under limited visibility conditions to eliminate rear-end crash potentials at every time step. Both Road Weather Information Systems (RWIS) and Vehicle Detection Systems (VDS) data were used to derive visibility distance (VD) and SSD, respectively. Moreover, the K-Nearest Neighbors (KNN) method was adopted to predict both VD and SSD in estimating predictive HSIs, which would be used to trigger advanced warning information to encourage safer driving. The outcome of this study is also expected to be used for monitoring freeway traffic stream in terms of safety.

Implementation of Road Risk Information Notice Device (도로위험정보알림 디바이스 구현)

  • Kim, Jong-Duk;Han, Seung-Heon;Kim, Yong-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • With the increasing supply of vehicles, construction of new roads and expansion of existing roads are growing and this is leading to a proportional rise in diverse hazards on a road. These hazards are classified into fixed hazards and variable hazards. Currently, drivers receive information of fixed hazards, such as overspeed, frequent accidents, and rock fall through navigations. However, variable hazards are more hazardous than fixed hazards. Map companies frequently enter information of variable hazards manually, but it is less real-time and hard to deal with unforseen hazards. This paper is intended to implement a road hazard warning system for making a contribution to pubic interests by improving this problem and delivering real-time information of hazards to drivers, and suggest a direction for using information of hazards on a road.

A Study on Removal of Harmful, Heavy Metals in Fly Ash from Municipal Incinerator

  • Nakahiro, Yoshitaka
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.489-493
    • /
    • 2001
  • Big cities in Japan have serious problems due to the shortage of new reclaimed land for municipal wastes. If harmful heavy metals such as cadmium, lead, copper and etc. are contained in the municipal waste combustion residues, they are not able to fill up according to the environmental law in Japan. In this study, the removal of heavy metals in the fly ash (EP ash) was dealt with chloridizing vaporization method. EP ash as a non-hazardous materials is utilized as covering materials, road bed, and building materials.

  • PDF

GIS Management on Risk Evaluation of a Road Slope Using Terrestrial LiDAR (지상 LiDAR를 활용한 접도사면 위험평가에 따른 GIS관리)

  • Jang, Yong Gu;Kwak, Young Joo;Kang, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.169-175
    • /
    • 2006
  • Recently, slope failures are disastrous when they occur in mountainous area adjoining highways. The accidents associated with slope failures have increased due to rapid urbanization of mountainous area. Therefore, the inspection of slope is conducted to maintain road safety as well as road function. In this study, we apply to the remedy which is comparing existent description to advanced technology using GIS. We utilize a Terrestrial LiDAR, one of the advanced method, to generate precise and complete road slope model from expert point of view. In result, we extract hazardous slope information from external measurements referring to the evaluation criteria of external slope stability. We suggest not only the database but also the method of road risk evaluation based on internet GIS.

Developing Road Hazard Estimation Algorithms Based on Dynamic and Static Data (동적·정적 자료 기반 도로위험도 산정 알고리즘 개발)

  • Yang, Choongheon;Kim, Jinguk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.4
    • /
    • pp.55-66
    • /
    • 2020
  • This study developed four algorithms and their associated indices that can quantify and qualify road hazards along roadways. Initially, relevant raw data can be collected from commercial vehicles by camera and DTG. Well-processed data, such as potholes, road freezing, and fog, can be generated from the Integrated management system. Road hazard algorithms combine these data with road inventory data in the Data Sharing Platform. Depending on well-processed data, four different road hazard algorithms and their associated indices were developed. To test the algorithms, an experimental plan based on passive DTG attached in probe vehicles was performed at two different test locations. Selection of the test routes was based on historical data. Although there were limitations using random data for commercial vehicles, hazardous roadways sections, such as fog, road freezing, and potholes, were generated based on actual historical data. As a result, no algorithm error was found in the entire test. Because this study provides road hazard information according to a section, not a point, it can be practically helpful to road users as well as road agencies.

A Numerical Analysis of Hydrogen Diffusion for Hydrogen Leakage from a Fuel Cell Vehicle in a Long Road Tunnel (장대터널에서 수소연료전지 차량의 수소 누출에 대한 수소 거동의 수치해석 연구)

  • Choi, Jongrak;Hur, Nahmkeon;Lee, Moonkyu;Chang, Hyungjin;Lee, Kwangbum;Yong, Geejoong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.588-597
    • /
    • 2012
  • In the present study, the dispersion characteristics of hydrogen leakage from a Fuel Cell Vehicle (FCV) were analyzed by numerical simulation in order to assess the risk of a hydrogen leakage incident in a long road tunnel. In order to implement the worst case of hydrogen leakage, the FCV was located at the center of a tunnel, and hydrogen was completely discharged within 63 seconds. The Leakage velocity of hydrogen was adopted sub-sonic speed because that the assumption of the blockage effect of secondary device inside a vehicle. The temporal and spatial evaluation of the hydrogen concentration as well as the flammable region in a road tunnel was reported according to change of ventilation operating conditions. The hydrogen was blended by supply air form a ventilation fan, however, the hydrogen was discharged to outside in the exhaust air. It is observed that the efficiency way to eliminate of hydrogen is supply air operating condition under the hazardous hydrogen leaking incident. The present numerical analysis can be provided useful information of ventilation under the hydrogen leaking situation.

Speeding Detection and Time by Time Visualization based on Vehicle Trajectory Data

  • Onuean, Athita;Jung, Hanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.593-596
    • /
    • 2018
  • The speed of vehicles has remained a significant factor that influences the severity of accidents and traffic accident rate in many parts of the world including South Korea. This behavior where drivers drive at speeds which exceed a posted safe threshold is known as 'speeding'. Over the past twenty years, the Korean National Police Agency (NPA) has become aware of an increased frequency of drivers who are speeding. Therefore, fixed-type ASE systems [1] have been installed on hazardous road sections of many highways. These system monitor vehicle speeds using a camera. However, the use of ASE systems has changed the behavior of the drivers. Specifically, drivers reduce speed or avoid the route where the cameras are mounted. It is not practical to install cameras at every possible location. Therefore, it is challenging to thoroughly explore the location where speeding occurs. In view of these problems, the author of this paper designed and implemented a prototype visualization system in which point and color are used to show vehicle location and associated over-speed information. All of this information was used to create a comprehensive visualization application to show information about vehicle driving. In this paper, we present an approach detecting vehicles moving at speeds which exceed a threshold and visualizing the points those violations occur on a map. This was done using vehicle trajectory data collected in Daegu city. We propose steps for exploring the data collected from those sensors. The resulting mapping has two layers. The first layer contains the dynamic vehicle trajectory data. The second underlying layer contains the static road networks. This allows comparing the speed of vehicles on roads with the known maximum safe speed of those roads, and presents the results with a visualization tool. We also compared data about people who drive over threshold safe speeds on each road on days and weekends based on vehicle trajectories. Finally, our study suggests improved times and locations where law enforcement should use monitoring with speed cameras, and where they should be stricter with traffic law enforcement. We learned that people will drive over the speed limit at midnight more than 1.9 times as often when compared with rush hour traffic at 8 o'clock in the morning, and 4.5 times as often when compared with traffic at 7 o'clock in the evening. Our study can benefit the government by helping them select better locations for installation of speed cameras. This would ultimately reduce police labor in traffic speed enforcement, and also has the potential to improve traffic safety in Daegu city.

  • PDF