• Title/Summary/Keyword: Road embankment

Search Result 85, Processing Time 0.026 seconds

Development of Model for Structural Evaluation of Anti-Freezing Layer (동상방지층의 구조적 평가를 위한 모형 개발)

  • Lee, Moon-Sup;Heo, Tae-Young;Park, Hee-Mun;Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2012
  • The thickness of anti-freezing layer has been empirically determined using the frost depth obtained from the freezing index and has not been generally considered as a structural layer in pavement design procedure. In fact, the anti-freezing layer makes a role in structural layer and enables to reduce the total thickness of pavement system. The objective of this study is to develop the statistical regression model for evaluating the structural capacity of anti-freezing layer using Falling Weight Deflectormeter(FWD) test data in asphalt pavements. The FWD testing was conducted at the embankment, cutting, and boundary area of various test sections to estimate the structural capacity of anti-freezing layer in different foundation condition. It is observed from this testing that the center deflections of pavement structure with anti-freezing layer are smaller than those without anti-freezing layer ranging from 0.4 to 82.6%. To determine the variables of statistical model, the correlation study has been conducted between various FWD deflection indexes and the anti-freezing layer thickness. It is found that the ${\Delta}BDI$(%)(${\Delta}Basin$ Damage Index(%)) is highly correlated with anti-freezing layer thickness. The ${\Delta}BDI$(%) model were developed for evaluating structural capacity of anti-freezing layer using linear mixed-effect models.

Geosynthetic Reinforced Soil Method for Restoration of Debris Flow Failure Slopes (쇄설성 유동파괴 사면 복구를 위한 토목섬유 보강토 공법)

  • Cho Yong-Seong;Kim You-Seong;Park Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.93-101
    • /
    • 2005
  • The formation of slopes is unavoidable under the special circumstance of Korea where $7%$ of the whole area are composed of mountains and civil engineering projects such as road and site developments are increasing with industrial development and horizontal expansions of urban area. Stability of slopes is one of quite important issues under special meteorological characteristics that over two-thirds of annual average rainfall is concentrated in summer season and the localized torrential downpour is getting more frequent recently. As a result of these circumstances, partial slope failures by debris flow of the high water content soils occur frequently in cut soil slopes. In this case of debris flow slope failure, slope declination method is selected fur the stable recovery because it is impossible to recover entirely by existing recovery methods. Seeding or special grass planting methods are followed separately without exception. The method by which entire recover with bigger stability ratio would be possible and grass planting work would be done simultaneously is developed. For debris flow failure slopes, this study secured the safety of slopes by preventing the inflow of rainwater and scour using geosynthetics-reinforced embankment, and created nature-friendly slopes by planting trees on the slopes.

Resear cher & Coordinator, Canal Reseach & Development, japan (농업수리시설과 소수로굴착용 Trencher V형의 개발에 대하여)

  • 영목청
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.28-36
    • /
    • 1979
  • One of most important problems in the Monsoon Asia today is the production of rice paddy to meet the needs of the ever increasing population. Diversemeans are being employed to meet this demand, both by increasing productivity of existing farm land and by bringing further areas into cultivation. The primary step in either field is to ensure that there is sufficient moisture in the soil to suit the paddy, and at the same this means that excess moisture has to be drained off the land, while in others irrigat ion has to be employed to bring sufficient water to an area. In view of the fact that the project comprises a huge amount of earthwork, it can be carried out by extensive use of construction machinery in order to shorten the period. As farm ditch has a comparatively small section with shallow cutting depth, inaddition, there is lack of access road in the field, the excavation equipment with bulldozer or tracter-shovel (backhoe) type are not applicable because there are mostly adapted for the excavation of deep and wide section. Mini-backhoe with its bucket width not larger than 0. 3m, and width of blade not larger than 1. 00m seems to be more adaptable. About 80% of excavation of ditch section will be done by the machinery while the other 20% of excavation together with the finishing of the section are supposed to be done by man-power. The embankment of ditch section can be compacted by the crawler of backhoe when it is moving along the ditch for excavation. However, Lowland paddy field in the Monsoon Asia are made particulary in rain season, therefore, heavy machinery is not easy excavation for ditch. It is very important to know exact ground support power of the working site and select machines with corresponding ground pressure. Ground support power is variable subject to quality and water content of soil and therefore selection of machines should be made duly considering ground condition of the site at the time of construction works. Farm ditches dug and compacted by mannual labar are of poor quality and subject to destruction after one or two years of operation. On the other hand, excavation and compaction by bulldozer is not practical for ditches. Backboe is suitable for slope land, but this is required cycle time of bucket excavation and dumped out. If a small-scale farm ditch trencher adaptable to lowland paddy field is invented, such a machine could greatly accelerate the massive construction work envisaged in many countries and thus significantly speed up the most difficult part of irrigation development and management in Monsoon Asia.

  • PDF

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

Effect of Water on the Lightweight Air-Mixed Soil Containing Silt Used for Road Embankment (도로성토체로 사용된 실트질 계열의 경랑기포혼합토에 대한 물의 영향)

  • Hwang, Joong-Ho;Ahn, Young-Kyun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.23-32
    • /
    • 2010
  • This study was especially conducted to find out the characteristics of the lightweight air-mixed soil (slurry density 10 kN/$m^3$) containing silt related to water. Compression strength, permeability, and capillary height of the lightweight air-mixed soil were studied, and also to support these studies, the structure of that soil was analyzed in detail. Air bubbles of various sizes are inside the lightweight air-mixed soil, and its distribution in a location is almost constant. A numerous tiny pores are inside the air bubbles so that the lightweight air-mixed soil can be saturated with water. Porosity is also estimated through the image analysis. Peak strength of the lightweight air-mixed soil is not dependent on water, but behavior of stress-strain is affected by the water. Permeability is about $4.857{\times}10^{-6}cm/sec$, which is a little bit higher than the clay's permeability. Capillary rise occurs rapidly at the beginning of the test until the lapse of 100 minutes and then its increase rate becomes slow. The capillary rise causes the increase of the density of the lightweight air-mixed soil, and thus it is required to pay attention to this phenomenon during structure design and maintenance of the lightweight air-mixed soil.