• 제목/요약/키워드: Road Element

Search Result 451, Processing Time 0.026 seconds

Predicting Long-Term Deformation of Road Foundations under Repeated Traffic Loadings (반복 교통하중에 의한 도로지반의 장기변형 예측)

  • Park, Seong-Wan;An, Dong Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.505-512
    • /
    • 2010
  • Generally, the repeated traffic loading condition should be considered to predict the long-term deformation on road foundations or foundation systems. However, it is not easy to estimate long-term deformation on multi-layered system like roads and railways. For more quantitative analysis, mechanistic-empirical approach requires proper analytical tool, material's model, and material properties of foundation geomaterials under both traffic and environmental loadings. In this study, therefore, laboratory data from the long-term repeated load triaxial tests were used to predict accumulated deformation on pavement foundations and the results were analyzed based on the nonlinear models and stress state considered. All these results are presented and verified on laboratory based scale using the finite element analysis with the deformation characteristics of foundation geomaterials at various stress states.

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

Nonlinear Analysis with contact element between old and new concrete (Contact 요소를 이용한 신.구 콘크리트의 비선형 해석)

  • Cho, Sun-Kyu;Lee, John-Sun;Jeong, Woo-Cheol;Lee, John-Shin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1050-1055
    • /
    • 2007
  • In the case of a rail road bridge extension work, especially single track to double track, the foundation of new substructure which supports the extended part of superstructure could be interfered by the exist foundation of an old bridge. When these two foundations are jointed to prevent such fatal effects of the structure as unequal subsidence of soil foundations, it is important to prove the structural behaviour of the joining surfaces between new foundation and old foundation. 3-Dimensional Finite Element Analysis Method have been studied for the solutions of the structural behaviour of the foundations. In this analysis, 'Contact Element' which allows the sliding of each adjoining member is used for the joint of the boundary surface of the old and new pier foundations. Furthermore, Material Nonlinear Behaviour Analysis also supports the accuracy of the result in this study because the foundations consist of concrete main bodies and reinforced steel bars. These detailed analyses secure the verification of the structural safety of the foundations in the extension work more firmly.

  • PDF

Analysis of a Dynamic Rig Test Model for Truck Chassis Systems (트럭 샤시 시스템의 동적 리그시험모텔 해석)

  • 임재혁;성현수;임세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.94-100
    • /
    • 2004
  • A dynamic finite element analysis of a rig test model for truck chassis systems is conducted to establish an appropriate model designed to predict the fatigue life. A reference Belgian road input, which has been obtained from a field test, is imposed on the finite element model in the modal finite element analysis, and the resulting strain history is employed for the prediction of the fatigue life. This is compared with the prediction based upon the strain history measured in the field test. The two agree with each other within the limitation of the field data and the input data to the model. The high frequency responses over 50 Hz are confirmed to be negligible as far as their effect on the fatigue life is concerned.

Three Dimensional Finite Element Analysis of Filling Stage in Casting Process Using Adaptive Grid Refinement Technique (3차원 적응 격자 세분화를 이용한 주조 공정의 충전 해석)

  • Kim Ki Don;Jeong Jun Ho;Yang Dong Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.568-576
    • /
    • 2005
  • A 3-D finite element model combined with a volume tracking method is presented in this work to simulate the mold filling for casting processes. Especially, the analysis involves an adaptive grid method that is created under a criterion of element categorization of filling states and locations in the total region at each time step. By using an adaptive grid wherein the elements, finer than those in internal and external regions, are distributed at the surface region through refinement and coarsening procedures, a more efficient analysis of transient fluid flow with free surface is achieved. Adaptive grid based on VOF method is developed in tetrahedral element system. Through a 3-D analysis of the benchmark test of the casting process, the efficiency of the proposed adaptive grid method is verified. Developed FE code is applied to a typical industrial part of the casting process such as aluminum road wheel.

Mechanistic Analysis of Geogrid Base Reinforcement in Flexible Pavements Considering Unbound Aggregate Quality

  • Kwon Jay-Hyun;Tutumluer Erol;Kim Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.37-47
    • /
    • 2006
  • The structural response and performance of a flexible pavement can be improved through the use of geogrids as base course reinforcement. Current ongoing research at the University of illinois has focused on the development of a geogrid base reinforcement mechanistic model for the analysis of reinforced pavements. This model is based on the finite element methodology and considers not only the nonlinear stress-dependent pavement foundation but also the isotropic and anisotropic behavior of base/subbase aggregates for predicting pavement critical responses. An axisymmetric finite element model was developed to employ a three-noded axisymmetric membrane element for modeling geogrid reinforcement. The soil/aggregate-geogrid interface was modeled by the three-noded membrane element and the neighboring six-noded no thickness interface elements. To validate the developed mechanistic model, the commercial finite element program $ABAQUS^{TM}$ was used to generate pavement responses as analysis results for simple cases with similar linear elastic material input properties. More sophisticated cases were then analyzed using the mechanistic model considering the nonlinear and anisotropic modulus property inputs in the base/subbase granular layers. This paper will describe the details of the developed mechanistic model and the effectiveness of geogrid reinforcement when used in different quality unbound aggregate base/subbase layers.

  • PDF

A Study on Adaptive Front-Lighting System based on Diffractive Optical Element (회절 광학 소자 기반 적응형 전조등 시스템 연구)

  • Seong-Uk Shin;Seung-Ho Park;Kyoung-Sun Yoo;Myeong-Jae Noh
    • Advanced Industrial SCIence
    • /
    • v.2 no.4
    • /
    • pp.28-35
    • /
    • 2023
  • In this paper, a diffractive optical element was designed to create lighting patterns that satisfy the requirements of adaptive headlight systems for normal road mode, highway mode, and wet road mode, and this was rendered into a GDSII stream format file.To verify the effectiveness of the light distribution formed by the diffractive optical elements and the realization of white light, simulations based on Field Tracing and Ray Tracing were conducted, confirming the satisfaction of position and luminance requirements at the transformation beam measurement points. Based on this research, it is anticipated that the implementation of adaptive headlights would be possible, enabling the reproduction of luminance contrast and the creation of a simple-structured adaptive headlight system.

Optimal Route Location using Possible Traffic Capacity and Virtual Running and Application at Road Design in the City Centre (도심지 도로설계에서 가능교통량과 가상 주행을 통한 최적노선선정)

  • Choi, Hyun;Song, Suck-Jin;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.39-46
    • /
    • 2005
  • This paper use virtual running after possible traffic capacity application for optimal route location. General road is designed the design after we examine an alternate adequacy investigation and an execution design sufficiently. Various road user's requirement must be reflected from the beginning. But it is difficult to contain the various suitable design criteria because we consider the existing 2-dimension element. First of all, this study chose optimal route, used traffic assignment and 3D simulation. Then selected optimal route through the consistent road construction by analyzing road driving simulation of 3-dimension data and the urban landscape. possible traffic capacity and virtual running will be able to do the urban landscape analysis harmonizing with the environment; equally, it could be objectively solve the problem of a civil appeal.

  • PDF

A Study on Street Types and Application Patterns in High-Rise Apartment Housing - The Case Study of Prizewinners in the Design Competitions since the 1990s - (고층 아파트 단지의 동선 유형 및 적용 패턴에 관한 연구 - '90년대 이후 공영 아파트 설계 경기 당선안을 중심으로 -)

  • Kim, Hyung-Jin;Kim, Young-Suk;Park, Chan-Kyu
    • Journal of the Korean housing association
    • /
    • v.19 no.6
    • /
    • pp.33-44
    • /
    • 2008
  • The street system in multi-family housing is an important design element to control the circulation of vehicles and pedestrians, and to form the spatial organization of the projects. In particular, in the case of high-rise apartments, the street patterns have an influence on the safety, amenity, and convenience of facilities. Until now, however, the design of street patterns in most high-rise multi-family housing projects has diminished the quality of residential environments because priority of design consideration has primarily been given to planning road ways and parking areas. Nevertheless, the design competitions introduced for the first time in the 1980s have played a significant role in developing fresh ideas and concepts in housing design. Because street patterns have been respectably modified as a result of the generalizing of design competitions, it is important to review the ideas that have been proposed in competitions over the recent past. In this context, this study classified the types of street patterns and analyzed their design characteristics for the proposals of housing design competitions since the 1990s. As a result of this analysis, the road patterns are classified into 4 types: 1) serial type, 2) isolated type, 3) mixed type, and 4) not a road pattern due to the system of connection. In addition, these were further divided into 8 types: 1) loop, 2) ring, 3) penetration, 4) tree, 5) direct entry, 6) ring and penetration, 7) loop and penetration, 8) not a road pattern due to appearance and the collector.