• Title/Summary/Keyword: Ro-vibrational distribution

Search Result 4, Processing Time 0.016 seconds

The Influence of Collision Energy on the Reaction H+HS→H2+S

  • Liu, Yanlei;Zhai, Hongsheng;Zhu, Zunlue;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3350-3356
    • /
    • 2013
  • Quasi-classical trajectory calculations have been carried out for the reaction H+HS by using the newest triplet 3A" potential energy surface (PES). The effects of the collision energy and reagent initial rotational excitation are studied. The cross sections and thermal rate constants for the title reaction are calculated. The results indicate that the integral cross sections (ICSs) are sensitive to the collision energy and almost independent to the initial rotational states. The ro-vibrational distributions for the product $H_2$ at different collision energies are presented. The investigations on the vector correlations are also performed. It is found that the collision energies play a postive role on the forward scatter of the product molecules. There is a negative influence on both the alignment and orientation of the product angular momentum for low collision energy at low energy region. Whereas the influence of collision energy is not obvious at high energy region.

Infrared Study of a Low-mass Star-forming Region L1251B

  • Choi, Yunhee;Lee, Jeong-Eun;Bergin, Edwin A.;Blake, Geoffrey A.;Boogert, A.C. Adwin;Francesco, James Di;Evans, Neal J. II;Pontoppidan, Klaus M.;Sargent, Annelia I.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.56.1-56.1
    • /
    • 2016
  • A low-mass star-forming region, L1251B, is an excellent example of a small and nearby group of protostellar objects. L1251B has been mapped spectroscopically with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. IRS has provided mid-IR emission lines (e.g., [Fe II], [Ne II], and ro-vibrational H2) and absorption features of CO2 and H2O ice in studying the physical state of the ionized gas and the material residing in the circumstellar environments. We will present the distribution of outflows and ice components in L1251B.

  • PDF

Employing GDQ method for exploring undamped vibrational performance of CNT-reinforced porous coupled curved beam

  • Moein A. Ghandehari;Amir R. Masoodi
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.551-565
    • /
    • 2023
  • Coupled porous curved beams, due to their low weight and high flexibility, have many applications in engineering. This study investigates the vibration behavior of coupled porous curved beams in different boundary conditions. The system consists of two curved beams connected by a mid-layer of elastic springs. These beams are made of various materials, such as homogenous steel foam, and composite materials with PMMA (polymethyl methacrylate) and SWCNT (single-walled carbon nanotube) used as the matrix and nanofillers, respectively. To obtain equivalent material properties, the role of mixture (RoM) was employed, followed by the implementation of the porosity function. The system's governing equations were obtained by employing FSDT and Hamilton's law. To investigate thermal vibration, temperature was implemented as a load in the governing equations. The GDQ method was used to solve these equations. To demonstrate the applicability of the GDQ method in calculating the frequencies of the system and the correctness of the developed program, a validation study was conducted. After validation, numerous examples were presented to investigate the behavior of single and coupled curved beams in various material properties and boundary conditions. The results indicate that the frequencies of the curved beams and the system depend highly on the amount of porosity (n) and the distribution pattern. The system frequencies decreased with an increase in the porosity coefficient. The stiffness of the springs had no effect on the first mode frequency but increased frequencies of other modes in a specific range. The frequencies of the system decreased with an increase in environmental temperature.

Looking for Direct Evidence of Triggered Star Formation: Gas Kinematics

  • Lim, Beomdu;Sung, Hwankyung;Lee, Jae Joon;Oh, Heeyoung;Kim, Hwihyun;Hwang, Narae;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.54.1-54.1
    • /
    • 2016
  • Stellar wind and radiation pressure from massive stars can trigger the formation of new generation of stars. The sequential age distribution of stars, the morphology of cometary globules, and bright-rimmed clouds have been accepted as evidence of triggered star formation. However, these characteristics do not necessarily suggest that new generation of stars are formed by the feedback of massive stars. In order to search for any physical connection between star forming events, we have initiated a study of gas and stellar kinematics in NGC 1893, where two prominent cometary nebulae are facing toward O-type stars. The spectra of gas and stars in optical and near-infrared (NIR) wavelength are obtained with Hectochelle on the 6.5m MMT and Immersion GRating INfrared Spectrograph on the 2.7m Harlan J. Smith Telescope at McDonald observatory. In this study, the radial velocity field of gas across the cluster is investigated using $H{\alpha}$ and [N II] ${\lambda}$ 6584 emission lines, and that of the cometary nebula Sim 130 is also probed using 1-0 S(1) transition line of $H_2$. We report a distinctive velocity field of the cometary nebulae and many ro-vibrational transitions of $H_2$ even at high energy levels in the NIR spectra. These properties indicate the interaction between the cometary nebulae and O-type stars, and this fact can be a clue to triggered star formation in NGC 1893.

  • PDF