• Title/Summary/Keyword: Riverbank filtration water source heat pump

Search Result 6, Processing Time 0.025 seconds

Greenhouse Heating Technology Development by using Riverbank Filtration Water (강변여과수를 이용한 온실난방기술 개발)

  • Moon, Jong-Pil;Lee, Sung-Hyoun;Kwon, Jin-Kyung;Kang, Youn-Ku;Ryou, Young-Sun;Lee, Su-Jang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.145-152
    • /
    • 2011
  • In order to heat greenhouse nearby river channel, riverbank filtration water source heat pump was developed for getting plenty of heat flux from geothermal energy. Recharging well, thermal storage tank with separating insulation plate and filtering tank for eliminating iron, manganese were mainly developed for making the coefficient of performance (COP) of heat pump higher. Heating system using riverbank filtration water source heat pump was installed at a paprika greenhouse in the Jinju region where a single fold of vinyl cover and 2 layers of horizontal thermal curtain were installed as a part of temperature keeping and heat insulation with a greenhouse area of 3,185 $m^2$. 320,000 kcal/h was supplied for performing a site application tests. A greenhouse heating test was performed from Feb. 1, 2011 to Apr. 30, 2011. As the result of that, COPh of the heat pump was measured in the range of 4.0~4.5, while COPS of the system was represented as 2.9~3.3. COP measured of the heat pump was very good and well responded to indoor heating temperature of the environment control system of a greenhouse.

Development of Water-Source Heat Pump System Using Riverbank Filtration Water on the Waterfront (친수지역 강변여과수 열원을 활용한 냉난방시스템 개발)

  • Cho, Yong;Kim, Dea Geun;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.201.2-201.2
    • /
    • 2011
  • A water-source heat pump system has been developed for cooling and heating of a green house on the waterfront in Jinju. In order to supply a heat source/sink of water in alluvium aquifer to the heat pump system, the riverbank filtration facility (two pumping wells and one recharge well) for water intake and injection has been constructed. To pump and recharge water sufficiently, the geometric design such as depth and diameter for the wells have been completed, and details of the well such as slot size and length of the screen and filter pack size have been designed based on the practical and theoretical design method including D30 technique. For the investigation of the hydrogeological characteristics, step-drawdown test, long-term pumping test, and recovery test have been carried out for two developed pumping wells. Step-drawdown test has been performed on 4 step flowrates of 150, 300, 450, $600m^3$/day for 1 hour, and long-term pumping test on flowrate of $500m^3$/day for 24 hours, and recovery test for 6 hours. Since the underground water filtrated by riverbank is flowing smoothly into the well, the water level goes down slightly for the long-term test. Consequently, the stable pumping flowrate for two pumping well has been predicted at least over $1,647m^3$/day which is larger than the flowrate of $1,000m^3$/day for a 60 RT heat pump system.

  • PDF

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

Installation and Monitoring of Bankfiltration (including alluvial and riverbed deposits) Source Heat Pump Cooling System (강변여과수(충적층 및 하상)를 이용한 냉방시스템 설치 및 모니터링)

  • Jung, Woo-Sung;Hwang, Ki-Sup;Ahn, Young-Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.5-8
    • /
    • 2006
  • The Alternative energy has lately attracted considerable attention due to the high oil price and environment problem. In this study, pilot test facility for using the geothermal energy source from riverbank filtration was constructed and monitoring devices are installed to estimate the efficiency of this system. Initial installation cost can be saved efficiently by connect ing a heat pump system into the exist ing pumping well in Changwon riverbank filtration site. One set of monitoring results during summer was presented and analyzed.

  • PDF

Development of Technology on Water Thermal Energy Utilization of Riverbank(including Alluvial and Riverbed deposits) Filtration (강변여과수(충적층 및 하상) 열자원 활용 기술 개발)

  • Kim, Hyoung-Soo;Seo, Min-Woo;Jung, Woo-Sung;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Geothermal energy becomes to be one of the promising energy sources. In this study, technology using water thermal energy from riverbank filtration system(including alluvial and riverbed deposit) is reviewed and checked as an energy resources. The objects of this study are (1) long-term monitoring of alluvial and riverbed sites, (2) preliminary design of cooling and heating system at riverbank filtration facility, and (3) calculation of potential groundwater heat energy, including riverbank filtration system. Measuring data of alluvial and riverbank filtration show slight fluctuations comparing to temperature of atmospheric air which indicates that groundwater obtained from the riverbank filtration system have a sufficient potential as a source of cooling and heating energy.

  • PDF

Riverbank Filtration Well Development for a Heat Source/Sink of Ground Water Heat Pumps (시설원예 냉난방을 위한 온도차에너지 열원용 충적대수층 강변여과수 개발)

  • Cho, Yong;Lee, Nam Young;Lee, Song Ee;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.171.1-171.1
    • /
    • 2010
  • Riverbank filtration wells have been developed to supply a heat source/sink of water in the alluvium aquifer to ground water heat pumps for cooling and heating of a green house. In order to look for an appropriate site to carry out the research, two sites of Jinju and Gumi areas were investigated. In the results of the electrical resistivity surveys, Jinju and Gumi areas have the alluvium aquifer in the depth of 6~17 m and 10~20 m under the ground respectively. Two boreholes have been drilled in each site of both areas. The averaged water level at Jinju site is about 3 m under the ground, and 3.5 m and 6.5 m of sandy gravel aquifer layers are existed in each site. While Gumi site has 10 m water level and 2.5 m and 4.6 m of sandy gravel aquifer. Therefore, it is expected that $1,000m^3$/day of water could be withdrawn at Jinju site rather than Gumi site.

  • PDF