• Title/Summary/Keyword: River wetland

Search Result 239, Processing Time 0.027 seconds

Change of Wetland Microbial Activities after Creation of Constructed Wetlands (인공습지 조성 후 습지미생물활성도 변화에 관한 연구)

  • Lee, Ja-Yeon;Kim, Bo-Ra;Park, So-Young;Sung, Ki-June
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2010
  • To understand the initial changes in the microbial activities of wetland soil after construction, dehydrogenase activity (DHA) and denitrification potential (DNP) of soil from 1 natural wetland and 2 newly constructed wetlands were monitored. Soil samples were collected from the Daepyung marsh as a natural wetland, a treatment wetland in the West Nakdong River, and an experimental wetland in the Pukyong National University, Busan. The results showed that the DHA of the natural wetland soil was 6.1 times higher than that of the experimental wetland and similar to that of the treatment wetland 6 months after wetland construction (fall). Few differences were observed in the DNP between the soil samples from the natural wetland and 2 constructed wetlands four months after wetland construction (summer). However, 6 months after the construction (fall), the DNP of the soil samples from the natural wetland was 12.9 times and 1.8 times higher than that of the experimental wetland and the treatment wetland, respectively. These results suggested that the presence of organic matter as a carbon source in the wetland soil affects the DHA of wetland soil. Seasonal variation of wetland environment, acclimation time under anaerobic or anoxic wetland conditions, and the presence of carbon source also affect the DNP of the wetland soil. The results imply that the newly constructed wetland requires some period of time for having the better contaminant removal performance through biogeochemical processes. Therefore, those microbial activities and related indicators could be considered for wetland management such as operation and performance monitoring of wetlands.

An Observational Study on the Differences in Thermal Characteristics of the Upo Wetland and Converted Areas from Wetland to Paddy Field

  • Koo, Hyun-Suk;Jeon, Dae-Youn;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.622-629
    • /
    • 2009
  • This study intended to collect data for evaluating the meteorological value of Upo Wetland which is the largest wetland in the downstream of Nakdong River. The observations were conducted in summer at the Upo Wetland and its surrounding paddy field that is the converted areas from a wetland to a paddy field. The following results are obtained: 1) The temperature of Upo Wetland area was $1^{\circ}C$ lower than the surrounding area during the day while it was a little higher during the night.; 2) The maximum wind speed in the Upo Wetland area was 3.5 m/s which is stronger than 1.6 m/s of its surrounding area. The south wind was observed in the farmland for most of the day while north winds and south winds alternated between day and night in Upo Wetland.; 3) In heat budget analysis, Upo Wetland was wasted in the form of latent heat rather than sensible heat in daytime.

Spatio-Temporal Dynamics of Estuarine Wetlands Related to Watershed Characteristics in the Han River Estuary (유역특성에 따른 한강하구 습지의 공간분포 및 변화분석)

  • Rho, Paik-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.344-354
    • /
    • 2007
  • Estuarine wetlands for 33 watersheds in the Han River estuary were delineated on topographic maps from the 1910s, 1970s, and 2000s. Then, these data were used to address the issue of spatial distribution and temporal variation. Watershed characteristics such as drainage density, location, watershed size, slope, and elevation were identified for each watershed to determine the relationship between watershed characteristics and spatial distribution of estuarine wetlands. The analysis of estuarine wetlands indicated that wetlands in the estuary had declined gradually between the 1910s and the 1970s, although most wetlands were lost since the 1970s mainly caused by the large development projects related to urban expansion in metropolitan Seoul. The sediment composition and formation processes of the wetlands differed with watershed location; mud flats dominate in the lower part of the estuary, and relatively more sandy and emergent-plant wetlands occur near the main channel and tributaries of the Han River. Relatively more estuary wetlands occur in large watersheds, which have high slopes and low elevations. Estuarine wetlands have been lost dramatically in the densely populated watershed regions (i.e., Han River Seoul, Han River Goyang, West Han River), while relatively more wetlands have remained in undeveloped regions, including the Lower Imjin River and Lower Han River. In particular, anthropogenic disturbance has played an important role in the loss of wetland through the conversion of wetland into agricultural and developed land.

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

Estimating carbon dioxide uptake in wetland ecosystems of Tumen River Basin using eddy covariance flux data (에디 공분산 기반의 플럭스 타워 관측자료를 이용한 두만강 유역 습지 생태계 CO2 흡수량 분석)

  • Chen, Pengshen;Zhao, Shuqing;Cui, Guishan;Lee, Dongkun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.67-74
    • /
    • 2024
  • In the context of rapid temperature rise in mid-to-high latitude regions, cold region wetlands have become a hotspot for current wetland carbon cycle research due to their high sensitivity to climate change. Strengthening the monitoring of CO2 fluxes in wetland ecosystems is of great practical significance for clarifying the carbon balance of wetlands and maintaining the ecological balance of wetland ecosystems in China's high latitude regions. In this study, the carbon flux (NEE, Net ecosystem exchange; GPP, Gross Primary Production; RECO, Ecosystem response) of Jingxin Wetland was monitored by eddy correlation method from August 2021 to March 2024.2022-2023 shows CO2 sinks, absorbing 349.4 g C·m-2·yr-1 annually. The correlation analysis showed that Ta, VPD and PPFD were the main environmental factors affecting CO2 flux in Jingxin wetland.

A preliminary study of genetic structure and relatedness analysis of Nutria (Myocastor coypus) in Upo Wetland

  • Jung, Jongwoo;Jo, Yeong-Seok
    • Journal of Species Research
    • /
    • v.1 no.1
    • /
    • pp.100-103
    • /
    • 2012
  • Nutria Myocastor coypus is one of a well known invasive riparian mammal found species around world from North America to Eurasia and Africa. In South Korea, feral nutrias inhabit areas from the Nakdonggang and Namgang (River) to their tributaries and Upo Wetland where they have had devastating effects on environment. Nevertheless, there has been little research about nutrias in Korea. This study is to analyze the genetic structure of the nutria population in the Upo Wetland and identify the origin of the source populations. Twenty individuals from the Upo Wetland were genotyped using 25 microsatellite loci. When compared with another introduced population, that of the Blackwater Nation Wildlife Refuge in U.S., the Upo population contains considerable genetic variations. Tests for Hardy-Weinberg equilibrium and Bayesian clustering analysis suggest the Upo population is genetically structured and has at least two source populations. This preliminary study presents the need for further in-depth studies about this species which should combine genetic and ecological studies.

Fish Community and Habitat Environmental Characteristics in the Gudam Wetland

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Hui-Seong;Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this study, we investigated the water quality and fish community of the Gudam Wetland, a riverine wetland in the middle-upper reaches of the Nakdong River, during March-October 2020. The main results were as follows: average annual flow rate: 45.0±23.7 m3/s, flow velocity: 0.4±0.3 m/s, water depth: 1.4±0.4 m, water temperature: 17.5±0.8℃, pH: 7.8±0.2, electrical conductivity: 121.6±19.0 ㎲/cm, dissolved oxygen concentration: 11.4±0.9 mg/L, suspended solids concentration: 3.8±2.0 mg/L, and the water quality was classified as Ia (very good). A total of 754 individual fish belonging to 4 orders, 7 families, and 19 species were investigated. Cyprinidae was the dominant group, with 13 species. The dominant species was Zacco platypus (39.3%), followed by Pseudogobio esocinus (17.5%). There were 8 (42.1%) endemic Korean species and 1 exotic species, Micropterus salmoides. Four species were carnivores, six were insectivores, and nine were omnivores. Regarding tolerance to environmental changes, 6 species were tolerant, 11 had intermediate tolerance, and 2 were sensitive. Fish community analysis revealed dominance of 0.57, diversity of 2.04, evenness of 0.69, and richness of 2.72, indicating a diverse and stable fish community. The fish assessment index showed that the assessment class was B (average 62.5), which was higher than that of major streams of the Nakdong River (class C). For sustainable conservation of the Gudam Wetland, management strategies such as minimizing aggregate collection and preventing inflow of non-point pollutants are required.

The Analysis of the Fish Assemblage Characteristics by Wetland Type (River and lake) of National Wetland Classification System of Wetlands in Gyeongsangnam-do (국가습지유형분류체계의 습지 유형 (하천형과 호수형)에 따른 경남지역 습지의 어류군집 특성 분석)

  • Kim, Jeong-Hui;Yoon, Ju-Duk;Im, Ran-Young;Kim, Gu-Yeon;Jo, Hyunbin
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.2
    • /
    • pp.149-159
    • /
    • 2018
  • Twenty-nine wetlands (20 river type and 9 lake type wetlands) in Gyeongsangnam-do were investigated to understand the characteristics of fish assemblages by the wetland type and to suggest management strategies. As a result, $10.3{\pm}4.8$ species were collected from river type wetlands on average (${\pm}SD$) and $9.1{\pm}4.1$ species from lake type wetlands. Thus, there was no significant difference in the number of species between them (Mann-Whitney U test, P>0.05). However, the species that constitute the fish assemblage showed statistically significant differences between the two wetland types (PERMANOVA, Pseudo-F=2.9555, P=0.007). Furthermore, the species that contribute the most to each type of fish assemblage were Zacco koreanus (river type, 28.51%) and Lepomis macrochirus (lake type, 23.21%), respectively (SIMPER). The results of the NMDS analysis using the fish assemblage by place classified the species into three groups (river type, lake type, and others). The current wetland management is only focused on endangered species, but this study shows a difference in fish assemblage by wetland type. Therefore, a management system based information on endemic species, exotic species and major contribution species should be provided. Furthermore, the classification of some types of wetlands based on the present topography was found to be ambiguous, and wetland classification using living creatures can be used as a complementary method. This study has limitations because only two types of wetlands were analyzed. Therefore, a detailed management method that can represent every type of wetland should be prepared through the research of all types of wetlands in the future.

Improvement of Functional Assessment for Riverine Wetlands using HGM Approach (HGM 적용을 통한 하도습지의 기능평가 제고 방안 연구)

  • Yeum, Junghun;Kim, Taesung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.378-385
    • /
    • 2016
  • This study aims to suggest the framework of functional assessment on lotic area based on HGM(Hydrogeomorphic) approach targeting Wetland Protected Areas which are in the type of river channel, and to set up the fundamental data as a reference wetland. A total of 10 factors in terms of hydrology, biogeochemistry, plant habitat and animal habitat was analyzed based on the original approach of HGM and each Functional Capacity Index(FCI) of those factors was calculated. As the result of the modified FCI analysis, Damyang riverine wetland which is with artificial river bank had high values in the variables of area ratio of actual vegetation in the foreland, the number of plant per area and the area ratio of Salix spp., and those values were highly reflected on the factors of Nutrient Cycling(947,668.00), Species Richness and Maintain Characteristic Plant Communites(6.39) and Maintain Spatial Structure of Habitat(11.00). The Hanbando wetland which is keeping the natural bank had higher values in the variables of structural scale and species diversity, and the those values were highly reflected on the factors of Energy Dissipation(17,805.16), Subsurface Storage of Water(0.54), Removal of Imported Elements and Compounds(103,052.73), Maintain Characteristic Detrital Biomass(2.31), Maintenance of Interspersion and Connectivity (6.50), Species Diversity of Benthic macro-invertebrates(1.60) and Species Diversity of Vertebrate & Species Number of Other Animals(2.52/ 151.50), compared to the Damyang Riverine Wetland.

Changes of River Morphology in the Mid-lower Part of Nakdong River Basin after the 4 Large River Project, South Korea (4대강 사업 후 낙동강 중·하류의 하중도와 제외지 지형변화)

  • Im, Ran-Young;Kim, Ji Yoon;Choi, Jong-Yun;Do, Yuno;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.188-194
    • /
    • 2015
  • River channel dredging and riparian development have been influenced morphology and quantity of natural river habitat. We compared distribution of riverside land and alluvial island in the Nakdong River with field survey and remote sensing analysis after the 4 Large River Project in South Korea. We digitized geomorphological elements, includes main channel, riverside land, and alluvial island by using georeferenced aerial photos taken in pre-dredging (2008) and post-dredging (2012) periods. Field survey was followed in 2012 for a ground truth of digitized boundaries and identification of newly constructed wetland types such as pond, channel, branch, and riverine type. We found that during the dredging period, riverside land and alluvial island were lost by 20.2% and 72.7%, respectively. Modification rate of riverside land was higher in the section of river kilometer 50~90, 140~180, and 210~270. Alluvial island had higher change rate in the section of river kilometer 50~70, 190~210, and 270~310. Average change rate for the riverside land and alluvial island was $-1.02{\pm}0.14km^2{\cdot}10km^{-1}$ and $-0.05{\pm}0.05km^2{\cdot}10km^{-1}$, respectively. Channel shaped wetlands (72.5%) constituted large portion of newly constructed wetlands.