• Title/Summary/Keyword: River profile data

Search Result 50, Processing Time 0.024 seconds

Modeling Transverse Velocity Profile in Natural Streams (자연하천의 유속 횡분포 모델링)

  • Seo, Il-Won;Baek, Gyeong-O
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.5
    • /
    • pp.593-601
    • /
    • 1999
  • The knowledge about structure of the velocity in the stream IS essential in the investigation of stream meandering, erosion and sediment transport, and dispersion of pollutants in the stream. In this study, theoretical velocity profile model in which transverse profile of the longitudinal velocity in the stream can be predicted using stream hydraulic data was developed. The proposed model was tested with the measured velocity data of the Nakdong river. The result shows that the numerical model simulates properly the general shalxc of the measured velocity profiles. The simulated profiles agree well with measurements, especially in the aspects of skewness and flatness.atness.

  • PDF

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

Comparison of the Vertical Velocity Distribution in the Natural Streamflow (자연하천의 연직방향 유속분포 비교(수공))

  • 박승기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.346-351
    • /
    • 2000
  • The study was carried out to investigate the characteristics of vertical velocity distribution measured by current meter at Kangkyung station in Keum river during the period of 1995 to 1997. It suggests the quadratic parabola equation to estimate the vertical velocity profile only from the measurement data of surface velocity. The equation was found to be statistically very stable and showed high significance to express the surface velocity and bottom velocity. The vertical velocity profile was determined by the relationships to the surface velocity, and a coefficient of the quadratic parabola equation. The vertical velocity profile can be applied to calculating the mean velocity and discharge, and to and to analyse the dispersion of pollutant materials in the streamflow.

  • PDF

A Study on the Applicability of GSTAR-1D to the Riverbed-Level Variation in the Geum River (GSTAR-1D 모형의 금강 하상변동예측 적용성에 관한 연구)

  • Chung, Sung-Young;Park, Bong-Jin;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1611-1615
    • /
    • 2006
  • The purpose of this study is to simulate the riverbed profile changes downstream of Daecheong re-regulation dam from 1988 to 2001, to evaluate the model's applicability and to predict a long-term riverbed-level variation between 2002 and 2017. As a result of simulation 14 sediment transport equations provided by GSTAR-1D, it was found that Acker's & White formula was the most stable relatively. The interval used to calculate its stability was 7 days for bankful discharge$(1,000m^2/s)$, 3 days for daily maximum flow$(4,273m^2/s)$, 1 day for hourly maximum flow$(7,605m^2/s)$ and minimum flow$(8.5m^2/s)$. The simulation results of river bed changes were evaluated and compared to its measure data from 1988 to 2001. It was showed that there was the degradation for a section between Daecheong re-regulation dam and Maepo water stage gage station due to bed-material, and the degradation for a reach between Maepo and Gongju water stage gage station due to massive aggregate collection. Also, as a result of simulating the river profile change for 2002 to 2017, it was predicted that the section between Daecheong re-regulation dam and Geumnam Bridge would remain as the present profile and the reach between Maepo and Gongju water stage gage station would have some degradations in several parts, which would be stable as a whole unless it was due to artificial river profile change.

  • PDF

The relationships of erosion and river channel change in the Geum river basin (금강유역의 침식과 하상변동과의 관계)

  • 양동윤;짐주용;이진영;이창범;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.52-74
    • /
    • 2000
  • The basement rock of upper stream of Keum River Valley consists of Precambrian gneiss which is resistant to weathering. That of mid and lower stream valley, however, is mainly composed of Mesozoic granites which are vulnerable to weathering. The upstream part of Geum River Basin is typified by the deeply-incised and steep meandering streams, whereas mid and lower part is characterized by wide floodplain and gently dipping river bottom toward the Yellow Sea. In particular flooding deposits, in which are imprinted a number of repetitions of erosion and sedimentation during the Holocene, are widely distributed in the lower stream of Geum River Basin. For understanding of erosions in the mid and lower stream of Geum River Basin, the rate of erosion of each small basins were estimated by using the data of field survey, erosional experiments and GIS ananlysis. It was revealed that erosion rate appeared highest in granite areas, and overall areas, in this field survey were represented by relatively high erosion rates. By implemeatation of remote sensing and imagery data, the temporal changes of river bed sediments for about last 11 years were successfully monitored. Observed as an important phenomenon is that the river bed has been risen since 1994 when an embankment (Dyke) was constructed in the estuarine river mouth. From the results derived from the detailed river bed topographical map made in this investigation, the sedimentation of the lower river basin is considered to be deposited with about 5 cm/year for the last 11 years. Based on this river bed profile analysis by HEC-6 module, it is predicted that Geum River bed of Ganggyeong area is continuously rising up in general until 2004. Although extraction of a large amount of aggregates from Gongju to Ganggyung areas, the Ganggyung lower stream shows the distinct sedimentation. Therefore, it is interpreted that the active erosions of tributary basins Geum drainage basins can affect general river bed rising changes of Geum River.

  • PDF

A Research on the Probabilistic Calculation Method of River Topographic Factors (하천 지형인자의 확률론적 산정 방식 연구)

  • Choo, Yeon-Moon;Ma, Yun-Han;Park, Sang-Ho;Sue, Jong-Chal;Kim, Yoon-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.509-516
    • /
    • 2020
  • Since the 1960s, many rivers have been polluted and destroyed due to river repair projects for economic development and the covering of small rivers due to urbanization. Many studies have analyzed rivers using measured river topographic factors, but surveying is not easy when the flow rate changes rapidly, such as during a flood. In addition, the previous research has been mainly about the cross section of a river, so information on the longitudinal profile is insufficient. This research used informational entropy theory to obtain an equation that can calculate the average river slope, river slope, and river longitudinal elevation for a river basin in real time. The applicability was analyzed through comparison with measured data of a river's characteristic factors obtained from a river plan. The parameters were calculated using informational entropy theory, nonlinear regression analysis, and actual data. The longitudinal elevation entropy equation for each stream was then calculated, and so was the average river slope. All of the values were over 0.96, so it seems that reliable results can be obtained when calculating river characteristic factors.

A Study on Effective Flood Map Generation using NGIS Digital Topographic Maps (효율적인 홍수지도 구축을 위한 NGIS 수치지형도 활용에 관한 연구)

  • 송용철;권오준;김계현
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.449-454
    • /
    • 2004
  • Nowadays, flood hazard maps have been generated to minimize the loss of human lives due to flooding domestically. To generate the flood hazard maps, LiDAR data have mainly been used to provide topographic data. The LiDAR data requires, however, relatively higher cost and processing time. Therefore, the needs of validating possible use of topographic maps as an alternative source of LiDAR, which have been already existed from the NGIS project over the nation, has been raised. In this background, this study has generated a DEM over City of Kuri as a pilot study using conventional 1:1,000 and 1:5,000 topographic maps emphasizing the linkage of river profile with breakline processing algorithm to build the essential topographic data as accurate as possible. The results showed that the RMSE from topographic maps and LiDAR were 3.49 and 2.282 meter, respectively. Further study needs to be made to decide possible use of topographic maps instead of LiDAR including more easier updating of topographic maps to support flood map generation. In addition, 1:1,000 topographic mapping, which is limited to the urban areas so far, needs to be extended to the river areas.

  • PDF

Manning's n Calibration and Sensitivity Analysis using Unsteady Flood Routing Model (부정류 모형을 이용한 하천 조도계수 산정 및 산정오차의 수면곡선에 대한 민감도 분석)

  • Kim, Sun-Min;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.324-328
    • /
    • 2005
  • This study is to figure out uncertainty relationship between input data and calibrated parameter on unsteady hydraulic routing model. The uncertainty would be present to model results as a variant water surface profile along the channel. Firstly, Manning's n is calibrated through the model with assumed uncertainty on input hydrograph. Then, spatially distributed n-values sets based on the calibrated n values are used to get water profile of each n-values set. The results show that ${\pm}0.002$ of error in Manning's n cause ${\pm}30cm$ of maximum water surface differences at the Sumjin river.

  • PDF

High Resolution Hydroacoustic Investigation in Shallow Water for the Engineering Design of Railroad Bridge (철도교량 설계 지반조사를 위한 고분해능 수면 탄성파반사법의 응용 사례)

  • ;Swoboda Ulrich
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.231-238
    • /
    • 2001
  • To investigate the underground structure of shallow water, Han-river near Yangsou-Ri, high resolution hydroacoustic measurements were carried out for the engineering design of railroad bridge. The acoustic source was a Boomer with an energy of 90 to 280J and in a frequency range up to about 16KHz. The reflected signals were received by using both traditional hydrophones(passive element) and a specially devised receiver unit(active element) mainly composed of piezofilms and preamplifier. They are connected to the "SUMMIT" data acquisition system(DMT-GeoTec company), where the sampling interval was set to 1/32㎳. The source position was continuously monitored by a precision DGPS system whose positioning accuracy was on the order of loom. For the quality control purposes, two different source-receiver geometries were taken. That is to say, the measurements were repeated along the profile everytime depending on the different source energy(175J, 280J), the receiving elements(passive, active) and two different source-receiver geometries. It was shown that the data resolution derived from a proper arrangement with the active hydrophone could be greatly enhanced and hence the corresponding profile section caused by the regular data processing system "FOCUS" accounted excellently for the underground formation below the shallow water.w the shallow water.

  • PDF

An Estimation of River bed Profile of the Stream System based on the Potential Energy Concept (位置에너지 槪念에 依한 水系의 河川縱斷 推定)

  • Ahn, Sang-Jin;Kang, Kwan-Won;Kim, Chang-Su
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.2
    • /
    • pp.76-88
    • /
    • 1982
  • The stream morphological characteristics of a basin have important influence upon the analysis of runoff. In this study, the laws of stream morphology-the law of average stream fall and the law of least rate of potential energy expenditure-which were derived based on the analogy of entropy in thermodynamics are introduced and their validity is analysised with the data taken from the topographic maps covering the whole Geum River system. The first law is the Law of Average Stream Fall which states that under the dynamic equilibrium condition the ratio of average fall between any two different order stream in the same river basin in unity. The second law is the law of least rate of energy expenditure which states that all natural streams are intended to choose their own course of flow such that the rate of potential energy loss per unit mass of water this course is a minimum. The parameters representing the morphological characteristics of 13 tributaries in the Geum River system such as stream bifurcation ratio and stream concavity were Computed from the Horton-Strahler's laws and are used to check the law of average stream fall. The result showed that the law of average stream fall agrees reasonably well with law of Horton-Strahler. Concavity of a river basin is shown to be the determinative factor to the formation of a stream system. Concavity of a river basin is shown to be the determinative factor to the formation of a stream system. Based on Horton's Law and the law of average stream fall, longitudinal stream profiles can be calculated.

  • PDF