• Title/Summary/Keyword: River pollution

Search Result 859, Processing Time 0.025 seconds

Performance Appraisal of Total Maximum Daily Loads: Performance on Development/Reduction Plan and Water Quality Status of Unit Watershed (수질오염총량관리제의 성과평가: 개발/삭감계획의 이행실적 및 단위유역의 수질 현황)

  • Park, Jae Hong;Park, Jun Dae;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.481-493
    • /
    • 2009
  • This study was conducted to performance appraisal of Total Maximum Daily Loads (TMDLs), especially in terms of performance on development & reduction plan and water quality status of unit watershed. Because load allocations for pollution sources were predicted redundantly by uncertainty of prediction, TMDLs master plan has been frequently changed to acquire load allocation for local development. Therefore, It need to be developed more resonable prediction techniques of water pollution sources to preventing the frequent change. It is suggested that the reduction amount have to be distributed properly during the planning period. In other words, it has not to be concentrated on the specific year (especially final year of the planning period). The reason why, if the reduction amount concentrate on the final year of the planning period, allotment loading amount could not be achieved in some cases (e.g., insufficiency of budget, extension of construction duration). If the development plan was developed including uncertain developments, it is necessary to be developed reduction plan considered with them. However, some of the plans in the reduction plan could not be accomplished in some case. Because, it is not considered financial abilities of local governments. Consequently, development plan must be accomplished to avoid uncertain developments, and to consider financial assistance to support the implementation of effective plan. Water quality has been improved in many unit watersheds due to the TMDLs, especially in geum river and yeongsang/seomjin river.

Analysis of Water Quality Trends Using the LOADEST Model: Focusing on the Youngsan River Basin (LOADEST 모형을 활용한 수질 경향성 분석: 영산강 수계를 중심으로)

  • Gi-Soon, Lee;Jonghun, Baek;Ji Yeon, Choi;Youngjea, Lee;Dong Seok, Shin;Don-Woo, Ha
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.306-315
    • /
    • 2022
  • In this study, long-term measurement data were applied to the LOADEST model and used as an analysis tool to identify and interpret trends in pollution load. The LOADEST model is a regression equation-based pollution load estimation program developed by the United States Geological Survey (USGS) to estimate the change in the pollution load of rivers according to flow rate and time and provides 11 regression equations for pollution load evaluation. As a result of simulating the Gwangjuchen2, Pungyeongjeongchen, and Pyeongdongchen in the Yeongbon B unit basin in the middle and upper reaches of the Yeongsan River with the LOADEST model using water quality and flow measurement data, lower values were observed for the Gwangjuchen2 and Pyeongdongchen, whereas the Pungyeongjeongchen had higher values. This was judged to be due to the characteristics of the LOADEST model related to data continuity. According to the parameters estimated by the LOADEST model, pollutant trends were affected by increases in the flow. In addition, variability increased with time, and BOD and T-P were affected by the season. Thus, the LOADEST model can contribute to water quality management as an analytical tool for long-term data monitoring.

Evaluation of Diatom Growth Potential in Midstream and DownstreamNakdong River (낙동강 중. 하류에서의 규조류 성장잠재력 평가)

  • Kwon, Young-Ho;Seo, Jung-Kwan;Park, Sang-Won;Yang, Sang-Yong
    • ALGAE
    • /
    • v.21 no.2
    • /
    • pp.229-234
    • /
    • 2006
  • For the test organism of algal growth potential (AGP), the diatom in the genus Stephanodiscus which cause blooms in the Nakdong River was used instead of generally used strains of Selenastrum, Microcystis, or Anabaena. AGP results indicated that all the samples in the Nakdong River except for that from the Nakdan Bridge site were eutrophic state. Furthermore, the sample from Kumho River site was hypertrophic state. In the main stream Nakdong River, the value of AGP was lowest at the upstream Nakdan Bridge site and was highest at Koryoung Bridge site which is just downstream of Kumho River confluent point indicating the seriousness of pollution contributed by the Kumho River to the Nakdong River. Changes in the concentration of nutrients before and after the AGP tests and inter-relationship among the nutrients indicated that the growth of the Stephanodiscus in the AGP tests were mostly affected by the nitrate, silicate and phosphate. The limiting nutrient was identified by the nutrient addition experiments and the results showed that phosphate was the limiting nutrient for the growth of Stephanodiscus in the tested samples.

A Policy Study to Preserve the Water Quality through the Activation of Local Autonomy (지방자치의 활성화를 통한 수질보전정책연구: 낙동강 수계오염과 위천공단 조성에 관한 갈등해결의 모색)

  • 김성수
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.297-316
    • /
    • 1996
  • This research emphasizes the necessity of the understanding and cooperation among focal governments to preserve the water quality of the Nak-dong river that runs through four local governments. First, this research considers the status of water-pollution in the Nakdong river, describes and finds problems within the central government's. "Clean Water Supply Plan" and local governments' water quality-related policies. Second, it deals with the conflict among local governments concerning the planning and building of "Wicheon Industrial Complex" in the middle-upstream of the Nakdong river which has triggered the opposition movement of the local governments and residents of the river's downstream area. With stressing the necessity of the understanding and cooperation among local governments, this research emphasizes roles of central government, of academic experts, and of local news-media in preserving the water quality. Key words : the Nakdong river, water quality policy, the conflict among local governments, the activation of local autonomy, Wicheon Industrial Complex, the cooperation among local governments.

  • PDF

Case study on the Chinese polluted river and lake restoration under the sponge city construction

  • Liu, Jian;Yuan, Zhan;Liu, Yan;Wu, Lingyi
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.353-361
    • /
    • 2017
  • In order to improve the urban ecological environment, the central government has developed a series of water pollution control policies and measures since April 2015, and required local governments to complete the work of the polluted river and lake restoration within specified period. Moreover, the polluted river and lake restoration has been selected as a key evaluation indicator of achievements of the sponge city construction implemented since April 2015. This paper describes how to apply the sponge city construction technology to rehabilitate the polluted rivers and lakes through the polluted water treatment project in Xinghan New Area, Hanzhong and the polluted Huaguping River restoration project in Pingshan District, Shenzhen. The experience and lessons of the polluted river and lake restoration are summed up. Some measures to solve existing problems are put forward.

  • PDF

Evaluation of River Water Quality by MBOD Method (MBOD법에 의한 하천의 수질평가 -영산강과 섬진강을 중심으로-)

  • 김명숙
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 1983
  • Evaluation of water quality of Yeong San river and Seomjin river by using of newly simplified MBOD method was performed. Of course, thought that there is some differences between nutrient demands of heterotrophic bacteria and those of Algae which obtain it by photosynthesis, but it has little influence on evaluation of Algae Growth potential. The result of this study were as follows: 1) In both river, the value of Chemical analysis and MBOD method of inorganic salts reveals as nearly same result. 2) Though organic pollution of Seomjin river is less than that of Yeongsan but inorganic contamination is somewhat advanced BOD 2.8 ppm. and MBOD 340 ppm. in Seomjin river but BOD 22 ppm. and MBOD 480 ppm. in Yeongsan river. 3) Both river have tendency to reveal higher Nitrogen value is MBOD=MBOD -P

  • PDF

Temporal-Spatial Variations of Water Quality Level and Water Quality Index on the Living Environmental Standards in the West Nakdong River (서낙동강에서 생활환경기준을 적용한 수질등급 및 수질지수의 시·공간 변동 분석)

  • Park, Kyeong-deok;Kang, Dong-hwan;So, Yoon Hwan;Kim, Il-kyu
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1071-1083
    • /
    • 2019
  • In this study, water quality levels were classified and water quality indices were calculated and analysed by using the water quality components of living environmental standards monitored 10 years (2008 ~ 2017) at four stations in the West Nakdong River. As a result of analyzing the monthly variation of the water quality components of the living environmental standards, the water quality in the West Nakdong River was worse downstream than upstream, and pollution at the WNR3 located in the downstream of the Jomangang was the most serious. As a result of classification of water quality levels, BOD and COD levels were the lowest, so water quality pollution in the West Nakdong River was found to be highly influenced by organic matters. The water quality index was the lowest in July and August at four stations, so water quality is showing the worst in summer. As a result of analyzing the correlation between the water quality components and the water quality index, the correlation between the TOC and the water quality index was high in the four stations, and the water quality index in the West Nakdong River was dominated by organic matters and nutrients.

Sediment Bacterial Community Structure under the Influence of Different Domestic Sewage Types

  • Zhang, Lei;Xu, Mengli;Li, Xingchen;Lu, Wenxuan;Li, Jing
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1355-1366
    • /
    • 2020
  • Sediment bacterial communities are critical to the biogeochemical cycle in river ecosystems, but our understanding of the relationship between sediment bacterial communities and their specific input streams in rivers remains insufficient. In this study, we analyzed the sediment bacterial community structure in a local river receiving discharge of urban domestic sewage by applying Illumina MiSeq high-throughput sequencing. The results showed that the bacterial communities of sediments samples of different pollution types had similar dominant phyla, mainly Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes, but their relative abundances were different. Moreover, there were great differences at the genus level. For example, the genus Bacillus showed statistically significant differences in the hotel site. The clustering of bacterial communities at various sites and the dominant families (i.e., Nocardioidaceae, and Sphingomonadaceae) observed in the residential quarter differed from other sites. This result suggested that environmentally induced species sorting greatly influenced the sediment bacterial community composition. The bacterial co-occurrence patterns showed that the river bacteria had a nonrandom modular structure. Microbial taxonomy from the same module had strong ecological links (such as the nitrogenium cycle and degradation of organic pollutants). Additionally, PICRUSt metabolic inference analysis showed the most important function of river bacterial communities under the influence of different types of domestic sewage was metabolism (e.g., genes related to xenobiotic degradation predominated in residential quarter samples). In general, our results emphasize that the adaptive changes and interactions in the bacterial community structure of river sediment represent responses to different exogenous pollution sources.

Assessment of Pollution Levels in the Jangsungcheon Watershed Using Load Duration Curves and Analysis of the Causes

  • Cho, Sohyun;Bak, Jonghun;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang Young
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.873-885
    • /
    • 2019
  • In this study, a load duration curve was applied to the Jangseongcheon, one of the tributaries of the Yeongsan River, to assess whether the target water quality was achieved. In addition, pollution of the water body was investigated to develop and suggest the optimal management time with respect to polluted flow sections and monthly conditions. The average flow rates of sections JS1 and JS2 were $0.25m^3/s$ and $1.08m^3/s$, respectively. The BOD and T-P for water-quality standards at JS1 were rated at II, whereas the COD and TOC were rated at III, thus indicating a fair level of water quality. By contrast, the BOD at JS2 was rated at III, the T-P at IV, and the TOC at V, indicating poor water quality in this section. The load duration curve was plotted using the actual flow data measured in eight-day intervals for eight years from 2011 to 2018 at locations JS1 and JS2 in the Jangsungcheon Basin. In an assessment using the load duration curve on whether the target water quality was met at location JS1, all of the water quality parameters (BOD, COD, TOC, T-N, T-P, and SS) satisfied the target water quality. By contrast, at location JS2, parameters COD, TOC, T-N, and T-P exceeded target values by more than 50%, indicating the target water quality was not met. The discharge loads of locations JS1 and JS2 were analyzed to identify the reasons the target water quality was exceeded. Results revealed that the land system contributed considerably. Furthermore, the discharge load of JS2 accounted for more than 80% of the load on the entire basin, excluding that of JS1. Therefore, the best method for restraining the inflow of pollutants into the stream near location JS2 must be applied to manage the water quality of the Jangsungcheon.