• 제목/요약/키워드: River flood

검색결과 1,531건 처리시간 0.028초

TFN model application for hourly flood prediction of small river (소규모 하천의 시간단위 홍수예측을 위한 TFN 모형 적용성 검토)

  • Sung, Ji Youn;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • 제51권2호
    • /
    • pp.165-174
    • /
    • 2018
  • The model using time series data can be considered as a flood forecasting model of a small river due to its efficiency for model development and the advantage of rapid simulation for securing predicted time when reliable data are obtained. Transfer Function Noise (TFN) model has been applied hourly flood forecast in Italy, and UK since 1970s, while it has mainly been used for long-term simulations in daily or monthly basis in Korea. Recently, accumulating hydrological data with good quality have made it possible to simulate hourly flood prediction. The purpose of this study is to assess the TFN model applicability that can reflect exogenous variables by combining dynamic system and error term to reduce prediction error for tributary rivers. TFN model with hourly data had better results than result from Storage Function Model (SFM), according to the flood events. And it is expected to expand to similar sized streams in the future.

The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (II) - Focus on Estimation of Flood Inundation - (원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(II) - 침수 피해면적 산정을 중심으로 -)

  • Son, Ahlong;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • 제35권5_2호
    • /
    • pp.797-808
    • /
    • 2019
  • This study evaluated the applicability of spacebourne datasets to the flood analysis in an ungauged watershed where is no discharge measurements. The Duman River basin of North Korea was selected as a target area which was flooded by recent Typhoon Lionrock. Topographical parameters for flood analysis were estimated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM). GDEM includes the shortcomings of information on river cross-section, and conducted 2 dimensional flood analysis when considering virtual river cross-section and not considering it. As a result of comparative analysis, an error occurs in the inundation area and depth, but when used carefully, it is considered that the satellite image can be used for creating flood hazard map and utilizing information for response and preparation.

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • 제53권2호
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.

Sensitivity analysis of flood vulnerability index of levee according to climate change (기후변화에 따른 제방의 홍수취약성지수 민감도 분석)

  • Lee, Hoo Sang;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • 제51권spc1호
    • /
    • pp.1161-1169
    • /
    • 2018
  • In this study, a new methodology was proposed to evaluate the flood vulnerability of river levee and to investigate the effect on the levee where the water level changes according to climate change. The stability of levee against seepage was evaluated using SEEP/W model which is two-dimensional groundwater infiltration model. In addition to the infiltration behavior, it is necessary to analyze the vulnerability of the embankment considering the environmental conditions of the river due to climate change. In this study, the levee flood vulnerability index (LFVI) was newly developed by deriving the factors necessary for the analysis of the levee vulnerability. The size of river levee was investigated by selecting the target area. The selected levees were classified into upstream part, midstream part and downstream part at the nearside of Seoul in the Han river, and the safety factor of the levee was analyzed by applying the design flood level of the levee. The safety ratio of the levee was analyzed by applying the design flood level considering the current flood level and the scenario of climate change RCP8.5. The degree of change resulting from climate change was identified for each factor that forms the levee flood vulnerability index. By using the levee flood vulnerability index value utilizing these factors comprehensively, it was finally possible to estimate the vulnerability of levee due to climate change.

Determine the Length of the Side-Weir of Side-Weir Detention Basin Considering the Uncertainty of the Water Level in River (하천 수위 예측의 불확실성을 고려한 강변저류지 횡월류부 길이 결정 기법)

  • Kim, Seojun;Kim, Sanghyuk;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • 제48권8호
    • /
    • pp.673-683
    • /
    • 2015
  • The existing flood protection in rivers has shown the limitation due to the urbanization around rivers and the abnormal climate. Thus, the demand for the constructions of side-weir detention basin are being increased as a part of integrated watershed flood protection plan. It is necessary to estimate the quantitative flood-control effect for including the side-weir detention basin in flood-control measures. For the determination, it is required to reduce the uncertainty of the design factors which can affect the flood-control effect of side-weir detention basin. Among the factors, however, the water level in river always contains uncertainty. Therefore, the design method considering the uncertainty is required. For the reasons, the design method considering uncertainty of the water level in river is suggested in this study with using the length of side-weir which is relatively easy-determinable by designers. Therefore, it is examined how the variation of the length of side-weir can affect the flood-control effect, using HEC-RAS, and then the method to determine the side-weir length considering the uncertainty of the water level in river through results from analyses. Since the uncertainty of the water level in river can be taken into account in the suggested design method, it is evaluated that the design method is more effective to suggest the flood-control effect of the side-weir type detention basin with higher safety side.

A Study on the Inundation Analysis of the Nam River Lowland Using GIS and FLUMAN (GIS와 FLUMAN을 이용한 남강 저지대 침수분석에 관한 연구)

  • Choi, Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • 제25권2호
    • /
    • pp.49-56
    • /
    • 2017
  • In this study, flood analysis was conducted to prepare for damage caused by typhoons and heavy rain due to abnormal climate and climate change. Two - dimensional flooding analysis using the FLUMEN model, which is widely used for national and international flood risk mapping, was conducted for the Nam River Basin, which is the tributary of the Nakdong River. This study divides the topography into $5m{\times}5m$ DEM by ArcView, so that the accuracy of river repair and hydrological characterization and flood area identification can be maximized. As a result of simulation of water flooding, 163.3ha in section 1, 227.7ha in section 2 and 59.9ha in section 3 were simulated.

Flood Risk for Power Plant using the Hydraulic Model and Adaptation Strategy

  • Nguyen, Thanh Tuu;Kim, Seungdo;Van, Pham Dang Tri;Lim, Jeejae;Yoo, Beomsik;Kim, Hyeonkyeong
    • Journal of Climate Change Research
    • /
    • 제8권4호
    • /
    • pp.287-295
    • /
    • 2017
  • This paper provides a mathematical approach for estimating flood risks due to the effects of climate change by developing a one dimensional (1D) hydraulic model for the mountainous river reaches located close to the Yeongwol thermal power plant. Input data for the model, including topographical data and river discharges measured every 10 minutes from July $1^{st}$ to September $30^{th}$, 2013, were imported to a 1D hydraulic model. Climate change scenarios were estimated by referencing the climate change adaptation strategies of the government and historical information about the extreme flood event in 2006. The down stream boundary was determined as the friction slope, which is 0.001. The roughness coefficient of the main channels was determined to be 0.036. The results show the effectiveness of the riverbed widening strategy through the six flooding scenarios to reduce flood depth and flow velocity that impact on the power plant. In addition, the impact of upper Namhan River flow is more significant than Dong River.

The Distribution and Behaviors of Suspended Matters in Seomjin River Estuary - Compared with Rainy and Wet Season - (섬진강하구에서 부유물질의 분포와 거동 - 풍수기와 평수기의 비교 -)

  • Kim, Seok-Yun;Lee, Byoung Kwan
    • Journal of Korean Society on Water Environment
    • /
    • 제25권6호
    • /
    • pp.935-942
    • /
    • 2009
  • During period of the rainy season of spring tide Aug. 2005, the suspended sediment transport rate from Seomjin River increased ten times as high as neap tide of low river discharge. During ebb tide of high terrestrial input, the grain size of suspended particles of both surface and bottom layer of the water column, showed a uni-modal distribution with a dominant peak at coarse fraction, which suggests a characteristic development of floc-sized particles of low mean effective density. On the contrary, the particles supplied toward upstream of Seomjin river from Gwangyang Bay during flood tide showed a bi-modal distribution with a secondary peak at finer fraction, possibly due to the resuspension and the deflocculation associated with the increased shear velocity at near bottom. Break-up of large flocs is also suggested by the increased mean effective density. However, settling velocity was lower during flood tide because of smaller grain size. Thus, net deposition of suspended sediment is expected at within Gwangyang Bay instead of upstream of Seomjin River, even though suspended sediment transport rate at near bottom water was three times higher than that at surface water during flood tide.

Enhancement of Digital Elevation Models for Improved Estimation of Small Stream Flood Inundation Mapping (DEM 개선을 통한 중소하천 홍수범람지도 정확도 향상)

  • Kim, Tae-Eun;Seo, Kang-Hyeon;Kim, Dong-Su;Kim, Seo-Jun
    • Journal of Environmental Science International
    • /
    • 제25권8호
    • /
    • pp.1165-1176
    • /
    • 2016
  • The accuracy of digital elevation models (DEMs) is crucial for properly estimating flood inundation area. DEM pixel size is especially important when generating flood inundation maps of small streams with a channel width of less than 50 m. In Korea, DEMs with large spatial resolutions of 30 m have been widely applied to generate flood inundation maps, even for small streams. Additionally, when making river master plans, field observations of stream cross-sections, as well as reference points in the middle of the river, have not previously been used to enhance the DEM. In this study, it was graphically demonstrated that high-resolution DEMs can increase the accuracy of flood inundation mapping, especially for small streams. Also, a methodology was proposed to modify the existing low-resolution DEMs by adding additional survey reference points, including river cross-sections, and interpolating them into a high spatial resolution DEM using the inverse distance weighting method. For verification purposes, the modified DEM was applied to Han stream on Jeju Island. The modified DEM showed much better accuracy when describing morphological features near the stream. Moreover, the flood inundation maps were formulated with the original 30 m pixel DEM and the modified 0.1 m pixel DEM using HEC-RAS modeling of the actual flood event of Typhoon Nari, and then compared with the flood history map of Nari. The results clearly indicated that the modified DEM generated a similar inundation area, but a very poor estimate of inundation area was derived from the original low-resolution DEM.

Comparison of Two-Dimensional Model for Inundation Analysis in Flood Plain Area (홍수시 둔치구간의 수리해석을 위한 2차원 모형 비교)

  • Ku, Young Hun;Kim, Young Do
    • Journal of Wetlands Research
    • /
    • 제16권1호
    • /
    • pp.93-102
    • /
    • 2014
  • In the flood plain, river facilities such as sports facilities and ecological park are builded up since the late 2000s. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and river facilities located in the flood plain. Therefore it is necessary to perform the numerical analysis for the extreme rain storm in the flood plain. In this study, to analyze the hydraulic impact by lowering and rising of the water level at flood plain, Both the FaSTMECH, which is a quasi-unsteady flow analysis model to be used for simulating the wet and dry, and the Nays2D, which is unsteady flow analysis model, are used in this study. Also, the flow velocity distribution and the inundation are compared over a period of the typhoon. As a result, the flow velocity distribution at flood plain showed very low values compared to the flow rate in the main channel. This means that the problem of sedimentation is more important than that of erosion in the flood plain.