• Title/Summary/Keyword: River contaminants

Search Result 78, Processing Time 0.023 seconds

Studies on the Evaluation Method of Heavy Metal Contamination Degree in the Han River (한강 저질중의 중금속 오염도 평가 방법에 관한 연구)

  • 어수미;박성배
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.47-57
    • /
    • 1992
  • This study was performed to evaluate contamination degree of heavy metals in sediments of Han River, compared with other nation's evaluation method. The results were as follows 1. The contamination Ratio calculation method by heavy metal concentration in differnt fraction size has a limitation to apply to all of the areas of Han river because of its characteristics of sediment. As a result, this method applied to only 4 areas of Pal Dang, Wang Sook Chon, Uk Chon, and Bul Kwang Chon, and Contmination Ratio of heavy metals in those areas were relatively low of below 3. So it's considered that those areas have less contaminated from anthropogenic contaminants. 2. The Contamination Ratio calculation method by heavy metal concentration in different areasthat of upper area to be background level-has a limitation also to apply to Han river. But it is considered that this method was relatively suitable to apply, so it should be prepared evaluation standand method for them. Contamination ratio from background level as Pal Dang area were most high in An Yang Chon. So it must be prepared purification and control measure at An Yang Chon.

  • PDF

Mixing Analysis of Oil Spilled into the River by GPS-equipped Drifter Experiment and Numerical Modeling (GPS 부자 실험과 수치모델링에 의한 하천에 유입된 유류오염물질의 거동 해석)

  • Jang, Juhyoung;Jong, Jaehun;Mun, Hyunsaing;Kim, Kyunghyun;Seo, Ilwon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2016
  • In cases of water pollution accidents, accurate prediction for arrival time and concentration of contaminants in a river is essential to take proper measures and minimize their impact on downstream water intake facilities. It is critical to fully understand the behavior characteristics of contaminants on river surface, especially in case of oil spill accidents. Therefore, in this study, the effects of main parameters of advection and diffusion of contaminants were analyzed and validated by comparing the results of Lagrangian particle tracking (LPT) simulation of Environmental Fluid Dynamic Code (EFDC) model with those of Global Position System (GPS)-equipped drifter experiment. Prevention scenario modeling was accomplished by taking cases of movable weir operation into account. The simulated water level and flow velocity fluctuations agreed well with observations. There was no significant difference in the speed of surface particle movement between 5 and 10 layer modeling. Therefore, 5 layer modeling could be chosen to reduce computational time. It was found that full three dimensional modeling simulated wind effects on surface particle movements more sensitively than depth-averaged two dimensional modeling. The diffusion range of particles was linearly proportional to horizontal diffusivity by sensitivity analysis. Horizontal diffusivity estimated from the results of GPS-equipped drifter experiment was 0.096 m2/sec, which was considered to be valid for applying the LPT module in this area. Finally, the scenario analysis results showed that particle movements could be stagnant when discharge from the upstream weir was reduced, implying the possibility of securing time for mitigation actions such as oil boom installation and wiping oil contaminants. The outcomes of this study can help improve the prediction accuracy of particle tracking simulation to establish the most suitable mitigation plan considering the combination of movable weir operation.

A Study on the Distribution and Property of Carbonaceous Materials in the Subsurface Sediments near the Imjin River (임진강변 퇴적층 내 탄소물질들의 분포 및 특성 연구)

  • Jeong, Sang-Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.34-43
    • /
    • 2010
  • The fate of hydrophobic organic contaminants (HOCs) in ground water is highly affected by the distribution and property of the carbonaceous materials (CMs) in subsurface sediments. CMs in soils consist of organic matters (e.g., cellulose, fulvic acid, humic acid, humin, etc.) and black carbon such as char, soot, etc. The distribution and property of CMs are governed by source materials and geological evolution (e.g., diagenesis, catagenesis, etc.) of them. In this study, the distribution and property of CMs in subsurface sediments near the Imjin river in the Republic of Korea and HOC sorption property to the subsurface sediments were investigated. The organic carbon contents of sand and clay/silt layers were about 0.35% and 1.37%, respectively. The carbon contents of condensed form of CMs were about 0.13% and 0.45%, respectively. The existence of black carbon was observed using scanning electron microscopes with energy dispersive spectroscopy. The specific surface areas (SSA) of CMs in heavy fraction(HFrCM) measured with N2 were $35-46m^2/g$. However, SSAs of those HFrCM mineral fraction was only $1.6-4.3m^2/g$. The results of thermogravimetric analysis show that the mass loss of HFrCM was significant at $50-200^{\circ}C$ and $350-600^{\circ}C$ due to the degradation of soft form and condensed form of CMs, respectively. The trichloroethylene (TCE) sorption capacities of sand and clay/silt layers were similar to each other, and these values were also similar to oxidzed layer of glacially deposited subsurface sediments of the Chanute Air Force Base (AFB) in Rantoul, Illinois. However, these were 7-8 times lower than TCE sorption capacity of reduced layer of the Chanute AFB sediments. For accurate prediction of the fate of hydrophobic organic contaminants in subsurface sediments, continuous studies on the development of characterization methods for CMs are required.

Magnetic force assisted settling of fine particles from turbid water

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.7-11
    • /
    • 2020
  • When rivers and lakes are contaminated with numerous contaminants, usually the contaminants are finally deposited on the sediments of the waterbody. Many clean up technologies have been developed for the contaminated sediments. Among several technologies dredging is one of the best methods because dredging removes all the contaminated sediments from the water and the contaminated sediments can be completely treated with physical and chemical methods. However the most worried phenomenon is suspension of fine particles during the dredging process. The suspended particle can release contaminants into water and resulted in spread of the contaminants and the increase of risk due to the resuspension of the precipitated contaminants such as heavy metals and toxic organic compounds. Therefore the success of the dredging process depends on the prevention of resuspension of fine particles. Advanced dredging processes employ pumping the sediment with water onto a ship and release the turbid water pumped with sediment into waterbody after collection of sediment solids. Before release of the turbid water into lake or river, just a few minutes allowed to precipitate the suspended particle due to the limited area on a dredging ship. However the fine particle cannot be removed by the gravitational settling over a few minutes. Environmental technology such as coagulation and precipitation could be applied for the settling of fine particles. However, the process needs coagulants and big settling tanks. For the quick settling of the fine particles suspended during dredging process magnetic separation has been tested in current study. Magnetic force increased the settling velocity and the increased settling process can reduce the volume of settling tank usually located in a ship for dredging. The magnetic assisted settling also decreased the heavy metal release through the turbid water by precipitating highly contaminated particles with magnetic force.

Distribution and Behavior of Mixed Contaminants, Explosives and Heavy Metals, at a Small Scale Military Shooting Range (국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동)

  • Park, Seokhyo;Bae, Bumhan;Kim, Minkyung;Chang, Yoonyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.523-532
    • /
    • 2008
  • A phase II site investigation and feasibility study was conducted at a military mortar shooting range near the demilitarized zone (Kyunggi, South Korea) to assess the extent of contaminants migration to the nearby Imjin river in which a flood control dam is under construction. The results showed that silty-clay soils around target areas were co-contaminated with heavy metals (Cd, Cu, and Pb) and explosives (HMX, RDX, and TNT). The total amount of contaminant was estimated to be 497.1 kg-RDX, 20.6 kg-HMX, 1.4 kg-TNT, 35.2 kg-Cd, 4,331 kg-Cu, and 5,115 kg-Pb, respectively. Both heavy metals and explosives were almost equally distributed on each soil particle size fraction. Neither subsurface soil samples nor ground water samples showed signs of contamination above the environmental criteria. The major migration route of contaminants was soil particles in surface run-off during rain at which a mass discharge rate of 30.0 mg-RDX/hour was observed.

Simplified Numerical Model of the Wind-driven Circulation with Emphasis on Distribution of the Tuman River Solid Run-off

  • Vanin, N.S.;Moshchenko, A.V.;Feldman, K.L.;Yurasov, G.I.
    • Ocean and Polar Research
    • /
    • v.22 no.2
    • /
    • pp.81-90
    • /
    • 2000
  • Supposed construction of a large port in the mouth of Tuman River requires careful examination of possible unfavorable ecological consequences for the Far Eastern Federal Marine Reserve. Since the Tuman River is the largest source of suspended material and possible contaminants flowing into the sea, and in order to understand how this material is allocated in the coastal zone, analyses are needed to check possible pathways of water transport and circulation system in the region. Linearized shallow water equations were used for numerical simulation of the wind-driven circulation to the north off the Tuman River mouth. The model results satisfactorily agreed with in situ data. The model circulation patterns are largely dependent on the wind direction and are conformed by the distribution of bottom sediments, and by the location of organic carbon and some pollutants accumulation zones. The most unfavorable situation for the Marine Reserve is the case of the southwesterly wind; even with quite moderate wind, the waters polluted by the run-off from the Tuman River can attain the south section of the Marine Reserve during the diurnal period.

  • PDF

Establishment of Rainfall and Contaminants Runoff Modeling System for the Joman River Watershed Using SWMM (SWMM을 이용한 조만강 유역 강우-오염물 유출모델링시스템 구축)

  • Lee, Yong-Chin;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.983-992
    • /
    • 2009
  • The purpose of the present study is to analyze pollutant runoff characteristics from non-point sources in Joman River basin. The present study contains analyzed results of rainfall and SS, BOD, COD, TN, TP runoff from Joman River basin. This study contains a sensitivity analysis of parameters that affect the simulation results of rainfall and pollutants runoff. Result of the sensitivity analysis shows that proportion of watershed and impervious areas is the most sensitive to peak discharge and total flowrate for rainfall runoff and that WASHPO is the most sensitive parameter for pollutants runoff. For parameter estimation and verification, flowrate and water quality is measured at the Kangdong Bridge in Haeban stream. A single rainfall event is use to perform parameter estimation and verification. Results of the present study show that total pollutant loads of Joman River basin is 11,600 ton of SS, 452 ton of BOD, 1,084 ton of COD, 515 ton of TN, and 49 ton of TP, respectively. In addition, it is found that contribution ratio of non point source and total source is 89% of SS, 63% of BOD, 61% of COD, 21% of TN, and 32% of TP, respectively.

A Study on the Correlation between River Contamination Level and Ground Pollution Source through Korean Case Study (국내 사례분석을 통한 하천오염도와 지반오염원의 상관관계에 관한 연구)

  • Choi, Joohwan;Song, Wonjun;Lee, Junhwan
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • This study measured for comparison and analysis the correlation of River pollution and Soil contamination, based on the results of previous research, and then in order to increase the efficiency of study, heavy metals which cause serious side effects was limited to the case among pollutants. This study focused on the rivers that near the Urban and industrial districts, for example, Nak-Dong river, An-Yang river, Tae-Hwa river and the rivers that near the farm land or pasture, for example, Yeong-San river, Mi-Ho river, then compare and analyze the degree of actual pollution as gathered the results of Previous research. Correlationship about pollutants of river near the Urban, industrial area and drainage basin its river has been proven, and this expected because of the strong influence by point pollution source. On the other hand, I can found the opposite relationship where the river near the farm land or pasture, and this probably because of the influence by nonpoint pollution source.

  • PDF

Design Parameters of Riverbed Filtration Estimated from Geochemical Data (지구화학적 해석을 이용한 하상여과 설계인자에 대한 연구)

  • Cho, Kang-Hee;Kim, Bong-Ju;Ahn, Joong-Hyuk;Rhim, Ki-Sung;Choi, Nag-Choul;Park, Cheon-Young
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.493-502
    • /
    • 2013
  • This study investigates the design parameters for riverbed filtration (RBF) based on the geochemistry of river water and groundwater. The study area consists of alluvium, and the area is readily affected by non-point sources of chemical contaminants in the surface environment; this is expected to affect the design parameters for RBF. River and groundwater samples were collected at three points along the river flow and at nine points along a transect normal to the river, respectively. The geochemical data indicate that the sources of individual chemical contaminants are industrial facilities and agricultural activity near the study area. In addition, The samples are mainly Ca-Na-$HCO_3$, Ca-Cl, and Ca-$HCO_3$-Cl type waters. The design parameters of RBF in the study area should consider K, $HCO_3$, $NO_3$, and Cl. We divided the study area into three regions based on the concentrations of stable nitrogen isotopes: Region A, the origin of the river and denitrification; Region B, denitrification in the flow direction of tributaries; and Region C, the origin of natural soil, sewage, and anthropogenic pollution.

Long-Term Trend Analysis and Exploratory Data Analysis of Geumho River based on Seasonal Mann-Kendall Test (계절 맨-켄달 기법을 이용한 금호강 본류 BOD의 장기 경향 분석 및 탐색적 자료 분석)

  • Jung, Kang-Young;Lee, In Jung;Lee, Kyung-Lak;Cheon, Se-Uk;Hong, Jun Young;Ahn, Jung-Min
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.217-229
    • /
    • 2016
  • The government has conducted a plan of total maximum daily loads(TMDL), which divides with unit watershed, for management of stable water quality target by setting the permitted total amount of the pollutant. In this study, BOD concentration trends over the last 10 years from 2005 to 2014 were analyzed in the Geumho river. Improvement effect of water quality throughout the implementation period of TMDL was evaluated using the seasonal Mann-Kendall test and a LOWESS(locally weighted scatter plot smoother) smooth. As a study result of the seasonal Mann-Kendall test and the LOWESS smooth, BOD concentration in the Geumho river appeared to have been reduced or held at a constant. As a result of quantitatively analysis for BOD concentration with exploratory data analysis(EDA), the mean and the median of BOD concentration appeared in the order of GH8 > GH7 > GH6 > GH5 > GH4 > GH3 > GH2 > GH1. The monthly average concentration of BOD appeared in the order of Apr > Mar > Feb >May > Jun > Jul > Jan > Aug > Sep > Dec > Nov > Oct. As a result of the outlier, its value was the most frequent in February, which is estimated 1.5 times more than July, and was smallest frequent in July. The outlier in terms of water quality management is necessary in order to establish a management plan for the contaminants in watershed.