• Title/Summary/Keyword: River channel characteristics

Search Result 227, Processing Time 0.025 seconds

Prediction of River-bed Change Using River Channel Characteristics and A Numerical Model (하도특성량과 수치모형에 의한 하상변동 예측)

  • Yoon, Yeo Seung;Ahn, Kyeong Soo
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.51-61
    • /
    • 2007
  • In natural river, river-bed change is greatly influenced by the various factors such as river improvement, change of watershed land use, construction of dam and reservoir, gravel mining, and so on. The knowledge about river-bed change in the river is essential in the river modification, wetlands plan, and maintaining stable alluvial rivers. In this study, river-bed change in the future was predicted by investigating river channel characteristics which play dominant role in the formation of channel and based on the numerical model through river survey and the grain size analysis. The Proposed investigation and model was applied to the Geum river and the Miho stream which have been experienced river degradation due to river aggregate dredging and now seams to be stable. The result of potential river-bed change which was estimated by investigating channel characteristic including slope of channel, friction velocity, and so on is similar to that which was estimated based on the numerical model. It was found that the Geum river and the Miho stream will be stable. In the future, if considering the characteristics of river channel which is estimated by the river-bed scour, sediment, and so on, it is possible that river improvement and wetland restoration plan are established stably and naturally.

  • PDF

Analysis of Correlation on Physical Characteristics and Bed Materials in Natural Rivers (자연하천에서 하도의 물리적 특성과 하상재료의 상관관계분석)

  • Kim, Ki-Heung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.95-104
    • /
    • 2010
  • The purpose of this study is to analyze the correlation between physical stream characteristics and bed materials in natural rivers. Accordingly, four natural rivers were selected reference streams, they were Nam river, Sumjin River, Naesung River and Han River. Grain size distributions of bed materials were gravels, cobbles and boulders in Han river and Nam river, were sand, gravels, cobbles and boulders in Sumjin river and were sand in Naesung river. Four reference streams were divided into each two reference reaches (straight and bend) by plan and profile characteristics of naturally meandering stream. Therefore various reference reaches were chosen in the aspect of physical stream characteristics and grain size distributions. The results investigated and analyzed are as follows. The streams that grain sizes distributions of river bed materials were coarse were stable because they had variety of bed slope without sediment deposition, and then the riffles frequency and the physical characteristics were various. Also, velocitydepth regime were various in four kinds, and the response parts for water level change were small, so that channel flow status were stable and excellent condition. On the other hand, sand river that grain sizes distributions of river bed materials were fine had not the variety of parameters as velocity-depth regimes, sediment deposition, channel flow status and riffles frequency, so that the physical stream characteristics were not various.

A Comparative Analysis on Channel Forms and Landscapes at Naeseongcheon River and Wicheon River in Gyeongpook Province (경북 내성천과 위천의 하도 형상 및 경관 비교 분석)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.4
    • /
    • pp.1-16
    • /
    • 2010
  • Channel topography, sediment properties, channel landscapes and characteristics of land covers in Naeseongcheon and Wicheon River consisting of granites and sedimentary rocks, respectively, are compared and analyzed. Due to the differences of bedrocks, soils and characteristics of land covers in the basins, Wicheon River with the slow flow speed shows the larger variations in river stage than Naeseongcheon River. While Naeseongcheon River fed by the granite sediments throughout granular disintegration hs tthe regular grain size properties with coarse sand in the most of river, Wicheon River fed by sedimentary rocks indicates the dramatic decertses of grain size lower-ward. Naeseongcheon River with channel interferences such as sand-sized sediment transughoations, dredges, and aggregate collections is analyzed as poorer vegetation covers than Wicheon River due to the dramatic changes in channel surfaces.

A Study on the Hydraulic Characteristics of River Junctions Using FLDWAV Model (FLDWAV 모형을 이용한 하천합류부에서의 수리학적 특성 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • This study aims at the calculation of a variation of flow characteristics of main channel for tributary inflow in river junction. So this study was analyzed the variation of flow depth and velocity in main channel for a change of inflow degree. For this purpose, FLDWAV model are carried out for variations of $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ tributary inflow at junction. Results show that velocity ratio(V1/V3) increases and flow depth ratio(H1/H3) decreases for discharge ratio(Q1/Q3) of upstream and downstream when degree increases in junction. And FLDWAV model was applied at a real river junctions. Selected area is a junction of Gumho river and Sin stream. Results show that pattern is similar to a virtual channel.

  • PDF

Analysis of Hydraulic Characteristics Depending Upon the Geometrical and Discharge Condition at Channel Junctions (하도 합류부의 기하학적 특성과 유량조건에 따른 수리학적 특성 해석)

  • Ahn, Seung-Seop;Choi, Soo-Chul;Yim, Dong-Hee
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.495-503
    • /
    • 2007
  • In this study, we took the geometrical character of the river channel junction and hydrologic conditions as independent variables, and hydraulic behavior characteristics as an independent variable. The result, after multiple analysis was carried out, proved that, except for the generating area of the accelerating zone of velocity the accelerating zone and both the main channel and the tributary zone of stagnation the stagnation zone, there was correlation of over 90%. Also, derived presumed expression of the hydraulic characteristics of the junction was applied to the real natural channel - the river channel of the Guem-ho main channel(the A-yang bridge to the Guem-ho bridge). As the result, it proved that it represented hydraulic characteristics relatively well.

A Study on the Characteristics of Depositional Landform Change in the Geum River Channel Using Unmanned Aerial Vehicle: Focusing on Before and After the Opening Gate of Gongju Weir (무인항공기를 활용한 금강 하도내의 퇴적지형 변화 특성 연구: 공주보 개방 전·후를 중심으로)

  • Yoon, Hye-Yeon;Yun, Kwang-Sung;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • In this study is aerial photos and UAV(Unmanned Aerial Vehicle) images were used to analyzed the characteristics of depositional landform changes in the Geum river channels before and after the opening gate of Gongju weir. Based on the depositional landform classification result, the main stream and the bare land occupied most of the area in all periods, and also found that the main stream, mid-channel island, and sand bar occupied a greater degree of area increase or decrease compared to other landforms in the classification items. As a result of analyzing the characteristics of depositional landform changes before and after the opening gate of Gongju weir, it is judged that the depositional landforms have changed due to the decreased water level of the Geum river after the opening of the weir, the summer rainy season and typhoons, river stabilization after the effluence of Daecheong dam, supply and deposition of river sediments and fixation of vegetation. The results derived from this study can be used as basic data for the study of river depositional landforms and the establishment of management and conservation plans for the landforms in river channels.

A Study on morphological characteristics of large river channel based on bathymetry and near-river survey (하천측량을 통한 대하천 유로의 형태학적 특성에 관한 연구)

  • Ko, Joo Suk;Kwak, Sunghyun;Lee, Kyungsu;Lyu, Siwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.163-172
    • /
    • 2019
  • The linear and cross-sectional shapes of the natural river channel are subjected to continuous changes in time and space due to the interaction with the flow of water and sediment transport. This study aims to investigate the morphological characteristics and change patterns of river channel quantitatively for the middle reach of Nakdong River, which has undergone large scale riverbed dredging and construction work, as Four Major River Restoration Project. A series of bathymetry and near-river survey has been conducted to obtain the detailed terrain information for the study area. The properties related to the linear and cross-sectional characteristics of river channel have been calculated based on the filed survey data and analyzed with comparing the survey data obtained in 2012 for the project completion. Since there has not been enough time for meaningful terrain change to take place, it was not possible to extract special tendency in the degree and aspect of terrain change. However, it is necessary to make regular examinations to the patterns and degree of river channel change using the proposed methodology.

Analysis of Hydraulic Impacts due to Sudden Enlargement of Kyungpo-cheon River Channel (경포천 하도 급확대에 따른 수리학적 영향분석)

  • Choi, Jong-Ho;Jung, Tae-Jung;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.35-45
    • /
    • 2019
  • The enlargement and reduction of river channels can not only change the flow of water but also alter sedimentation patterns, thus hindering smooth flood conveyance. Accordingly, this study aims to analyze the effects of the sudden enlargement of river channels on changes in the riverbed and river flow. For this purpose, as part of the "Hometown River" Construction Project, this study examined the local river Kyungpo-cheon, which a section of the river channel was widened by at least two- to three-fold, using RMA-2 and SED-2D models to simulate the changes in flow characteristics and riverbed variation due to the widening of the channel. The results of the study indicated that widening the Kyungpo -cheon river channel secured its dimensional stability in comparison to before widening. however, due to a flood frequency of more than once per year, future maintenance and management will be costly and time-consuming.

Channel Characteristics of Sincheon Experimental Catchment using HEC - RAS model (HEC-RAS 모델을 이용한 신천 시험유역의 하도 특성연구)

  • Park, Byeongky;Lee, Myunggu;Hong, Changsu;Lee, Jaekwan;Lee, Young Joon;Choi, Joongdae
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.41-56
    • /
    • 2016
  • In recent localized heavy rainfalls have been arising from abnormal climate change. People are concerning about damages with increasing the frequency of flooding. Therefore, we need to understand river hydraulic characteristics and management to reduce damage from flooding. To study hydraulic characterization of Sincheon experimental catchment HEC-RAS (Hydrologic Engineering Center River Analysis System) model which provided by U.S Army Corps of Engineers (USACE) was applied. This study analyzed and compared water level the frequency flood for 100 years and 200 years by clark unit Hydrography. The change of the water level of Daejeon bridge, Sincheon bridge and Singi bridge showed increased for all conditions. The flow rate for the Daejeon bridge and the Sincheon bridge showed an increase, but the Sinki bridge showed a decreasing flow rate overally, except for 1hour-100 years. The verification result showed that the model was able to simulate the water level with 0.4709 coefficient of determination and error ration ranging from 1 to 3%.

A STUDY ON THE PARAMETER ESTIMATION OF SNYDER-TYPE SYNTHETIC UNIT-HYDROGRAPH DEVELOPMENT IN KUM RIVER BASIN

  • Jeong, Sang-man;Park, Seok-Chae;Lee, Joo-Heon
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.219-229
    • /
    • 2001
  • Synthetic unit hydrograph equations for rainfall run-off characteristics analysis and estimation of design flood have long and quite frequently been presented, the Snyder and SCS synthetic unit hydrograph. The major inputs to the Snyder and SCS synthetic unit hydrograph are lag time and peak coefficient. In this study, the methods for estimating lag time and peak coefficient for small watersheds proposed by Zhao and McEnroe(1999) were applied to the Kum river basin in Korea. We investigated lag times of relatively small watersheds in the Kum river basin in Korea. For this investigation the recent rainfall and stream flow data for 10 relatively small watersheds with drainage areas ranging from 134 to 902 square kilometers were gathered and used. 250 flood flow events were identified along the way, and the lag time for the flood events was determined by using the rainfall and stream flow data. Lag time is closely related with the basin characteristics of a given drainage area such as channel length, channel slope, and drainage area. A regression analysis was conducted to relate lag time to the watershed characteristics. The resulting regression model is as shown below: ※ see full text (equations) In the model, Tlag is the lag time in hours, Lc is the length of the main river in kilometers and Se is the equivalent channel slope of the main channel. The coefficient of determinations (r$^2$)expressed in the regression equation is 0.846. The peak coefficient is not correlated significantly with any of the watershed characteristics. We recommend a peak coefficient of 0.60 as input to the Snyder unit-hydrograph model for the ungauged Kum river watersheds

  • PDF