• Title/Summary/Keyword: River bridge

Search Result 377, Processing Time 0.03 seconds

Design Specifications of Cable Stayed Bridge Across Chambal River (참발강 횡단 사장교의 설계기준)

  • Kim, Mo-Seh;Yoo, Jun-Yeol;Cho, Eu-Kyeong;Lee, Sang-Min
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.41-46
    • /
    • 2008
  • The bridge across Chambal River consists of two approach bridges and a cable stayed bridge with concrete girder and pylon. And the main bridge has been designed mainly based on AASHTO LRFD. This article covers design specifications from AASHTO LRFD, which are applied to load combinations and structural verification. And it also covers local standards applied in definition of loads such as live load, wind load, temperature, etc. In addition, the difference between applied design specifications and Korean standards is mentioned in this article briefly.

The Application Of F.C.M(Free Cantilever Method) Case Study Of The Railway Bridge (철도교량 F.C.M(Free Cantilever Method) 공법 시공사례 연구)

  • Kwon, Soon-Seob;Kim, Kyong-Yeon;Choi, Dong-Kee;Jeong, In-Choul;Shin, Sang-Chul
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.562-567
    • /
    • 2005
  • F.C.M applied from Jin Jung Li to Yang Su Li(660m) in Puk Han River Bridge(1,414m) construction part is a construction method on the double-track construction which is the third section part of work, called Chung Ang Railroad Line(Deok-So${\sim}$Won-Ju). This method is the beginning application on Railroad Bridge. After completing upper slab structure, there are several following works such as setting up ballast, sleepers and laying long rails. So it is important to consider the properties of Railroad Bridge while designing the length of bridge and its single span. After the physical process study the shrinkage and creep of concrete, bending up by prestressing in general PSM bridge, relaxation of tendons as time goes by after post-tension, the conclusion of such a study is applied to the Puk-Han River Bridge in this construction field.

  • PDF

The effects of scour depth and riverbed condition on the natural frequencies of integral abutment bridges

  • Akbari, Reza;Maadani, Saeed;Abedi, Alireza;Maalek, Shahrokh
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.2
    • /
    • pp.85-101
    • /
    • 2019
  • The effects of foundation scour depth and riverbed condition on the natural frequencies of a typical cross-river integral abutment bridge have been studied. The conventional operational modal analysis technique has been employed in order to extract the modal properties of the bridge and the results have been used in the Finite Element (FE) model updating procedure. Two tests have been carried out in two different levels of water and wet condition of the riverbed. In the first test, the riverbed was in dry condition for two subsequent years and the level of water was 10 meter lower than the natural riverbed. In the second test, the river was opened to water flow from the upstream dam and the level of water was 2 meter higher than the natural riverbed. The results of these two tests have also been used in order to find to what extend the presence of water flow in the river and saturation of the surrounding soil affect the bridge natural frequencies. Finally, the updated FE model of the bridge has been applied in a series of parametric analyses incorporating the effect of piles' relative scour depth on the bridge natural frequency of the first four vibration modes.

A Study on Public Nuisance in Han River and Nackdong River Part II. Survey on Water Pollution (공해(公害)에 관(關)한 조사연구(調査硏究) 제이편(第二編) 한강(漢江), 낙동강(洛東江) 수질오염도(水質汚染度)에 관(關)한 비교(比較) 조사(調査) 연구(硏究))

  • Cha, Chul-Hwan;Shin, Young-Soo;Park, Soon-Young;Cho, Kwang-Soo;Choo, Chong-Yoo;Kim, Kyo-Sung;Choi, Dug-Il
    • Journal of Preventive Medicine and Public Health
    • /
    • v.4 no.1
    • /
    • pp.65-76
    • /
    • 1971
  • In view of ever rising water pollution problems of river in the vicinity of large urban communities, the author has made an investigation on the pollution of water sampled from Han River (Seoul area) and Nakdong River (Daegu city area) during the period from July to December, 1970. The water samples were taken twice a month during the study period of 6 months from 7 points (locations) along the main stream of Han River at Seoul city and 5 points of Nakdong River at Daegu city. The samples ware measured and analyzed in accordance with the recognized methods in the 'Standard Methods for Examination of Water and waste' by American Public Health Association. The obtained results are as follows : I. Han River. 1. Average turbidity was 5.1 units ranging from 1 to 10 units and the turbidity of down stream was higher than that of the upper stream. 2. pH value showed slight alkalinity (mean;7.2) except Yunchang-Dong (6.9). 3. The mean value of Dissolved Oxygen contents (D.O) was 7.2 ppm. (range of 3.4-10.5ppm.). D.O. of the upper stream (8.2 ppm. at Walker Hill boating place, 8.0 ppm. at the Gwangzang Bridge and Ddookdo) was higher than that of he downstream (5.6ppm. at Yumchang-Dong, 6.4 ppm. at the 2nd Han River Bridge), and D.O. in the winter season was higher than that in the summer season, respectively. 4 The mean value of the Biochemical Oxygen Demand (B.O.D.) was 28.3 ppm. (range of 6.2-64.8 ppm.). The mean value of B.O.D. was 48.7 ppm. at Yumchang-Dong, 42.3 ppm. at the 2nd Han River Bridge, 34.0 ppm. at the 1st nan River Bridge, 28.5 ppm. at the 3rd Han River Bridge, 19.2 ppm. at Dookdo, 13.2 ppm. at the Gwangzang Bridge, and 10.2 ppm. at the Walker Hill boating place in order of value. B.O.D. in July and August (35.6 and 34.5 ppm.) were the highest and that in November and December (18.6 and 21.2 ppm.) were the lowest. 5. Suspended Solids (SS) were from 15.0 to 667.0 ppm. with the mean of 222.1 ppm. 'Suspended Solids' of the water samples at Yumchang-Dong and the 2nd Han River Bridge were found to be 378.1 ppm. and 283.9 ppm. respectively which were higher than at the Gwangzang Bridge (134.1 ppm.) and at Walker Hill boating place (79.3ppm.). 6. Coliform colonies counting of the water samples ranged from $0-2,500{\times}10/100ml$. with the mean value of $205.6{\times}10/100ml$. The most contaminated water sample by coliform were from the point of the 2nd Han River Bridge with $640.8{\times}10/100ml$ while the lowest ones were from Walker Hill boating place with $17.2{\times}10/100ml$. There was also a seasonal variation in coliform contamination that is the higher in summer and the lower in winter. II. Nakdong River 1. The mean value of turbidity was 2.3 units with range of 0 to 9.0 units. The highest point was at Geumho River (7.2 units). and the lowest point was at Gangzung and Moonsan (0.45 and 0.41 units). 2. The mean value of pH was 7.5 (range of 7.1-8.5) and highest point was Geumho River with 8.5. 3. The mean value of D.O. was 8.1 ppm. (range of 3.4-11.2 ppm.). D.O. of the upper stream showed higher value than that of the down stream, and the winter season than the summer season. 4. B.O.D. ranged from 2.6 to 57.0 ppm. (mean; 20.4ppm.). The water sample at Geumho River showed the highest value (41.5 ppm.) while at Moonsan and Gangzung showed the lowest (4.6 and 4.7 ppm.). 5. The mean value of suspended solids was 48.7 ppm. (range of 4.0-182.0 ppm.). The highest month was July (63.7ppm.) and August (62.1 ppm.) and the lowest month was October (37.0 ppm.) and December (24.4 ppm.). 6. The mean value of the coliform colonies was $22.7{\times}10/100ml$. (range of $0-243{\times}10/100ml$.). The highest number of the colonies was found in the sample water at the Whawon recreation area ($50.5{\times}10/100ml$.) followed by the Geumho River ($33.9{\times}10/100ml$.), the Goryung Bridge ($28.3{\times}10/100ml$.), Gangzung($0.7{\times}10/100ml$), and Moonsan ($0.6{\times}10/100ml$.).

  • PDF

Historical Geography of Mu-Sim River and Nam-Suk Bridge in Chongju City (청주 무심천과 남석교에 관한 역사지리적 고찰)

  • Yeh, Kyong-Hee
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.4
    • /
    • pp.437-460
    • /
    • 2003
  • It is recorded that the orignal Nam-Suk Bridge is constructed at the first year of Oh-Bong(B.C. 57). But I believe that it can be back to the 19 year of Jin-Hung King(AD. 558) by discovered bibliographies. The Nam-Suk Bridge is improved and remodelled from past to the late of Zosun dynasty by the development of walled city of Chongju. By the late of Gojong Empire, the Nam-Suk Bridge has stone post and monument of Nam-Suk Bridge. Because the alternations of Mu-Sim River channel, heavy floods, extension of built, up area and Japanese unconcern, the stone post and monument of Nam-Suk Bridge is lost approximately by 1910s and Nam-Suk Bridge is completely buried by the early 1930s. The Mu-Sim Hiver has negative aspects from past to the Japanese rule but has increasingly the positive aspects after the liberation of Korea. We must reconstruct these buried cultural resources to highlight the cultural identity of Chongju City.

  • PDF

Analysis of Tidal Effect in Hangang Bridge by Automatic Discharge Measurement (자동유량측정에 의한 한강대교 조석영향 분석)

  • Lee, Min-Ho;Kim, Chang-Wan;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.513-523
    • /
    • 2009
  • The measuring point of the Hangang Bridge affected by tide has some special topographic characteristics due to Nodle Island. Furthermore the submerged weirs located on the upstream and downstream. Therefore flow is separated and joined by Nodle Island. Discharge measurement at the point of the Hangang Bridge is very important, because Hangang Bridge is key station in managing the discharge and flood forecasting. In the past, it was too difficult to measure discharge in tidal conditions. HRFCO(Han River Flood Control Office) installed automatic discharge measurement facilities for solving this problem. Measuring equipments operates and measures discharge every 10 minutes at 2 points(southern and northern section close to Nodle Island), and calculates flow discharge using Chiu's velocity law(Chiu, 1988). In order to verify the results of automatic discharge measurements, manual discharge measurements were carried out by ADCP. In addition, the monthly discharge were also compared.

Numerical Analysis of Flow and Bed Changes for Selecting Optimized Section of Buried Water Pipeline Crossing the River (하천을 횡단하는 도수관로의 최적 매설구간 선정을 위한 흐름 및 하상변동 수치모의)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1756-1763
    • /
    • 2014
  • A water pipeline buried under the riverbed could be exposed by bed erosion, therefore safe crossing sections should be analyzed for preventing damages due to the exposure of pipelines. In this study, flow and bed changes have been simulated using a two-dimensional numerical model for selecting the optimized section of pipeline crossing in the Geum River. As a result of simulation with the 20-year recurrence flood, sediment deposition has been distributed overall in the channel and bed erosion over 2 m has occurred near bridge piers. For the extreme flood simulation, the channel bed near the bridge piers has been eroded down to the buried depth. Therefore, within 140 m upstream of the bridge piers, bed erosion affects a buried pipeline in safety due to bridge pier effects and the crossing section over 150 m upstream of bridge piers is selected as a safe zone of a water pipeline.

Difference in the Visual Preference of the Bridges - The Case of the Han River - (교량의 시각적 선호도의 차이 - 한강의 교량을 대상으로 -)

  • Huh, Joon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • The purpose of this study is to investigate landscape image and define elements of difference in visual preference of bridges on the Han River. To do this end, video was used as a media for the evaluation of the landscape image of 16 bridges on the Han River using a Semantic Differential scale. Data is collected by 50 students from Woosuk University, majoring landscape architecture. Final analysis utilized a total of 704 samples of data. Data is analyzed through descriptive statistics, and spatial image is analyzed by factor analysis algorithm Principle component analysis using Varimax method is applied far extraction and factor rotation. T-test is used to find the difference between the bridge type of preference with the data of factor score. Logistic regression is used to select the factors that influences the visual preference among the image factors. The results of this study can be summarized as follows; The image of whole bridges on the Han River is somewhat orderly, sequential and open. The degree of visual preference of unique bridge type is higher than normal but there are some differences in visual preference within the same type of structure. This suggests that the surrounding landscape is one of the important factor for visual preference. Factors covering the image of bridge are found to be 'aesthetic', 'structure','spatial factor', and 'shape'. Total variance is obtained as 60.4%. The aesthetic variables are the most important factor for visual preference and the structural factor presents no significant difference in visual preference between more preferred and less preferred bridges. Since the collapse of Songsu Bridge, we thought the structural factor is very important but the results of this study suggest that it is more important to consider the aesthetic and spatial factors of the bridge to increase the visual preference when planning and designing bridges. Simulations with more detailed data about surroundings should be utilized practical design.

Mechanical performance study and parametric analysis of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Mingsai;Xu, Hang
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.189-198
    • /
    • 2019
  • This paper aims to study the mechanical performance of three-tower four-span suspension bridges with steel truss girders, including the static and dynamic characteristics of the bridge system, and more importantly, the influence of structural parameters including the side-main span ratio, sag-to-span ratio and the girder stiffness on key mechanical indices. For this purpose, the Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is taken as an example in this study. This will be the first three-tower suspension bridge with steel truss girders in the world. The mechanical performance study and parametric analysis are conducted based on a validated three-dimensional spatial truss finite element model established for the Oujiang River North Estuary Bridge using MIDAS Civil. It is found that a relatively small side-main span ratio seems to be quite appropriate from the perspective of mechanical performance. And decreasing the sag-to-span ratio is an effective way to reduce the horizontal force subjected to the midtower and improve the antiskid safety of the main cable, while the vertical stiffness of the bridge will be reduced. However, the girder stiffness is shown to be of minimal significance on the mechanical performance. The findings from this paper can be used for design of three-tower suspension bridges with steel truss girders.

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.