• Title/Summary/Keyword: River bed

Search Result 583, Processing Time 0.024 seconds

The Geochemical Characteristics of the River Water in the Han River Drainage Basin (한강수계분지내 하천수의 지구화학적 특성)

  • 서혜영;김규한
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.130-143
    • /
    • 1997
  • To investigate geochemical characteristics and the sources of the dissolved ion species in the river water in the Han river drainage basin, samples were collected at 60 sites from the Han river drainage basin. The data for. pH, conductivity, TDS (total dissolved solid), temperature, and concentrations of dissloved ions were obtained as follows : (1) The geochemical characteristics of the surface water in the South and North Han river drainage basins are mainly controlled by bed rock geology in the drainage basin and in the main stream of the Han river considerably affected by anthropogenic pollution. The South Han river water samples have high concentrations of $Ca^{2+}$ (ave. 15.42 ppm), $Mg^{2+}$ (ave. 2.74 ppm), HC $O_3$$^{[-10]}$ (ave. 51.9 ppm), which evidently indicates that the bed rock geology in a limestone area mainly controls the surface water chemistry. The concentration of S $O_4$$^{2-}$ is remarkably high (SHR10-2 : 129.9 ppm) because of acid mine drainage from the metal and coal mines in the upper reaches of the South Han river. (2) The South Han river and the North Han river join the Han river. in the Yangsuri, Kyounggido and flow through Seoul metropolitan city. The mixing ratio is about 60:40 at the meeting point (sample number HRl0). (3) The result of factor analysis suggests that the pollution factor accounts for about 79% and the bed rock type factor accounts for about 7% of the data variation. This means that the geochemical characteristics of the Han river water mainly controlled by anthropogenic pollution in the South Han river and main stream of the Han river drainage basin. (4) The chemical data for four tributaries such as the Wangsukcheon, the Tancheon, the Zunuangcheon, and the Anyangcheon show that the concentration of pollution elements such as N $O_2$, C $l^{-}$, P $O_4$$^{3-}$, S $O_4$$^{2-}$ and Mn are high due to municipal waste disposal.

  • PDF

Estimation of Sediment Transport and Long-term Prediction of Riverbed Elevation Changes in Yangon River (양곤강 퇴적물 이동 및 장기 하상변화율 측정)

  • Htet, Salaing Shine;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.450-457
    • /
    • 2019
  • Sedimentation is a common problem for river ports. But its intensity depends on the rate of sedimentation, channel shape and size, hydrodynamic behavior of the river and the importance of the port. High sedimentation rate in Yangon River has become one major issue for Myanmar as her largest port is located on the Yangon riverbank. As a result of the high sedimentation rate, shallow water area near the confluence of Yangon River, Pazundaung Creek, and Bago River keeps blocking the navigation channel to the Yangon Port, which also limits the size of vessel calling to Yangon Port. Therefore, studies to understand sediment transport process in Yangon River are required because the economic development of Myanmar highly relies on the Yangon Port. This paper aims to calculate the sediment transport and to predict the riverbed elevation changes in Yangon River by using Bagnold (1966) theory. Calculation result shows that huge difference can be found in the bed load transport between the rainy season and dry season in Yangon River, and thus the sedimentation problem would become more severe in the dry season when the transported sediments are reduced. The estimated sedimentation rate in dry season indicates that the rate of riverbed level rise near the Yangon Port area is about 0.063 m per year, which would lead to approximately 3.15 m rise in the riverbed level in next 50 yrs, considering the same workload of dredging to maintain the navigation channel.

Change in Stream Morphology after Gongneung Weir 2 Removal (공릉2보 철거에 따른 하천형태학적 변화)

  • Choi, Sung-Uk;Lee, Hea-Eun;Yoon, Byung-Man;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • Gongneung Weir 2 was built in 1970s to supply water for irrigation. For a long time, the weir was left uncared because of the land use change of the nearby area. The weir is 1.5 m high, and the stream in which the weir was installed has bed materials of fine sands to fine gravels. In 2006, the local government and residents agreed on uninstalling the weir, and the weir was removed completely on April 14. This paper reports the results of three field investigations for the study of the stream morphology change after the weir removal. Changes in grain size distribution, bed elevation, and cross section before and after the weir removal are provided and discussed. Net amount of sediment deposits within 1 km reach of the stream is estimated, and the results illustrates that the sediment process, leading to an equilibrium of the bed, progressed very swiftly, namely within 45 days.

Geochemical Relationship Between Shore Sediments and Land Geology in Keum River Area, West Coast of Korea (한반도 서해안 금강하구 연안퇴적물과 육상지질과의 지화학적 상관관계)

  • 지정만;장윤호;오재경;이연희
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.447-467
    • /
    • 2000
  • This study was carried out geochemically and mineralogically to define how Kunsan shore sediments are related to their terrestrial source rocks in the region of Keum River Basin, western Korea. As a whole the chemical composition for major elements, trace elements and rare earth elements analysis from shore sediments and river bed sediments doesn't show the big difference, and especially rare earth elements chondrite normalized patterns are almost same. Heavy minerals of shore sediments are identified as hornblende, epidote, ilmenite, garnet, hematite, magnetite, sphene and rutile. Compared with Taean Area of Seo et al. (1998) and Byeonsan Area of Kwon et al. (1999), Kunsan shore sediments of this study area were origined mostly from Keum River Basin.

  • PDF

Hydraulic Model Test and Numerical Analysis of Grass Concrete in River Environment (자연형 호안공법의 그라스콘의 수리모형실험 및 수치해석 연구)

  • Jang, Suk-Hwan;Park, Sung-Bum;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1248
    • /
    • 2007
  • This study aims at investigating the in situ applying grass concrete system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river bed which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, as well as sud critical flow measuring velocity and water surface elevation along the cross section. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

Numerical Simulation for River Safety of Saemangeum Basin according to Master Plan (새만금 종합개발계획에 따른 새만금 유역 치수 안전성 수치모의)

  • Jeong, Seok il;Yoo, Hyung Ju;Ryu, Kwang Hyun;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.127-133
    • /
    • 2018
  • The Saemangeum master plan includes dredging and waterproofing materials, construction projects that can change the hydraulic characteristics of the Saemangeum and Mangyeong and Dongjin River basins. In this study, the river safety of 2030 when the Saemangeum master plan was completed for 100 year frequency, 500 year frequency and 100 year frequency applied RCP 8.5 scenario was examined using Delft3D. As a result of the analysis, it was confirmed that there was no overflowing point at the 100 year frequency, but the difference between the flood level and the river bank elevation was relatively small at the curved and river joint part. At the 100-year frequency with the 500-year frequency and the RCP 8.5 scenario, the possibility of overflowing at several locations was confirmed. The possibility of river bed loss due to fast velocity appears in the upstream part of Mankyung River and it is necessary to monitor the safety of hydraulic structures continuously. In addition, it is expected that the expansion of the area showing the characteristics of the lake due to dredging will affect the sediment mechanism and water quality, so detailed and diverse studies will be needed.

Application of HEC-RAS and K-River for River Bed Change Prediction (하상변동예측을 위한 HEC-RAS와 K-River의 적용)

  • Byun, Jisun;Noh, Junwoo;Hur, Youngtek;Kim, Yeonsu;An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.240-240
    • /
    • 2022
  • 하천을 안전하고 효율적으로 관리하기 위해서는 하상재료, 하천형태, 하천유황 등 자연적 또는 인위적 변화에 의한 하상변동의 해석과 예측이 수행되어야 한다. 하상변동은 하천의 일정구간을 기준으로 상류단면으로부터 유입되는 유입 유사량과 하류단면을 통해 유출되는 유사량의 차이에 의해 구간 내에서 발생하는 하상의 상승 또는 저하가 발생하는 현상을 말한다. 이러한 하상변동은 하천의 이수와 치수, 환경변화에 복합적으로 영향을 미치게 된다. 이에 본 연구에서는 댐 직하류를 대상으로 K-River 모형과 HEC-RAS 모형을 이용하여 하상변동을 계산하고, 각 모형으로부터 얻어진 모의 결과를 비교 분석하였다. K-River 모형의 하상변동 모의를 위한 경계조건을 구성하기 위해 하상토의 입도분포를 입력하고, 유역의 월별 평균 강수량과 댐 유입량을 이용하여 비유량법을 이용하였으며, 산출된 유입량을 바탕으로 댐방류량을 결정하였다. 유사량 공식의 선정은 하천 및 하상토의 특성에 맞추어 적절히 활용하여야 하나, 본 연구에서는 테스트를 목적으로 Engelund-Hansen 공식, Yang 공식, Laursen 공식 등 5가지의 유사량 공식을 선정하였다. HEC-RAS 모형의 경우 최근 유사 부정류모의 기능이 개발되었으나, 테스트 결과 안정적으로 모의가 수행되지 않아 준정류 조건을 적용하여 수행하였다. HEC-RAS와 K-River의 모의 결과를 비교한 바에 따르면 정량적인 차이가 나타나지만, 하상고의 상승 및 하강 경향은 대체로 일치하는 것으로 확인되었다.

  • PDF

The Increment Of The Local Scour Depth At Piers By Constructing The Bridge Between Existing Bridges

  • Choi, Gye-Woon;Kim, Gee-Hyoung
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.159-168
    • /
    • 2000
  • In this paper, the increment of the local scour depth at piers by constructing the bridge between existing bridges is examined through the experiments in which 5 piers in the non-cohesive bed material in the experimental flume were installed. In the experiments the maximum distance of 25 times of the pier length and the maximum distortion width of 8 times of the pier width were utilized. Through the experimental studies, it was indicated that low flow, which can be characterized as the flow having low Froude numbers, the maximum bed configuration change is obtained when the piers are installed in the straight line in the flor direction without any distortion. However, In the high flow, which can be characterized as the flow having high Froude numbers, the maximum bed configuration change is obtained when the piers are installed with some distortion from the flow direction. The influence of the bed configuration by interaction between bridge piers is changed depending upon the Froude numbers, the distance between piers, and the distortion width between adjacent bridge piers. Also, because the scour patterns are affected by the bed configuration, the maximum scour should be increased by about 60% compared to that in a single pier if the interaction between bridge piers exists. It can be suggested that the maximum scour depth at bridge piers predicted by applying the existing equations should be increased if the interaction between bridge piers exist. Those cases are found when new bridges are constructed successively in the river in the urban area.

  • PDF

A Prediction Model of Transverse Bed Slope in Meandering Rivers (사행하천(蛇行河川)의 횡방향(橫方向) 하상경사(河床傾斜)의 예측모형(豫測模型))

  • Hong, Chang Sun;Chung, Yong Tai
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.81-89
    • /
    • 1991
  • An interesting property of meandering river patterns is that they slowly deform, as bank erosion on one side of a channel and deposition on the other side result in the location of the channel. In this study we used a sine-generated meander pattern proposed by Langbein and Leopold(1966) to develop a solution of a linear, second-order differential equation of transverse bed slope(bed topography) proposed by Odgaard(1986). A new model for transverse bed slope(bed topography), that accounts for the phase lag and the influence of the width to depth aspect ratio, was developed in this study and compared with results of field measurements.

  • PDF

Effects of Reduced Sediment Dynamics on Fluvial Channel Geomorphology in the Jiseok River (유사계의 역동성 감소가 지석천 충적하도의 지형변화에 미치는 영향)

  • Ock, Gi-Young;Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.445-454
    • /
    • 2012
  • The present study aims to investigate the long-term channel morphological changes derived from channelization, embankment and levee construction works in unregulated fluvial channel of the Jiseock River. Analyses of aerial photographs taken past (Year 1966) and recent (Year 2002) showed the temporally remarkable changes in channel planform such as channel shape, bar migration, vegetation encroachment in bar. During the period, the natural single threading changed into braided types together with decreasing sinuosity by 9.2%, increasing vegetation occupied bar ranged 97% of total bars area. Because such channel morphological changes are closely similar to those in dam downstream channels, we assume that both/either flow regime alteration and/or sediment transport discontinuity may be critical for the fixed channel and spread of vegetated bars even in unregulated river without dam reservoir upstream. We found more reduced frequency and magnitude of flooding water level comparing with past, but no significant alteration of inter annual water level variation. Bed material has been coarsened by 4~5 times and the riverbed has been degraded in overall channel but aggraded locally in conjunction reach of tributaries. The results indicates that reduced sediment dynamics in fluvial channel which derived by bed material coarsening, river bed degradation and unbalanced sediment transport capacity between tributary and mainstem can be a causal factor to trigger channel morphological changes even in unregulated rivers.