• Title/Summary/Keyword: River Construction

Search Result 1,281, Processing Time 0.032 seconds

A Method to Filter Out the Effect of River Stage Fluctuations using Time Series Model for Forecasting Groundwater Level and its Application to Groundwater Recharge Estimation (지하수위 시계열 예측 모델 기반 하천수위 영향 필터링 기법 개발 및 지하수 함양률 산정 연구)

  • Yoon, Heesung;Park, Eungyu;Kim, Gyoo-Bum;Ha, Kyoochul;Yoon, Pilsun;Lee, Seung-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.74-82
    • /
    • 2015
  • A method to filter out the effect of river stage fluctuations on groundwater level was designed using an artificial neural network-based time series model of groundwater level prediction. The designed method was applied to daily groundwater level data near the Gangjeong-Koryeong Barrage in the Nakdong river. Direct prediction time series models were successfully developed for both cases of before and after the barrage construction using past measurement data of rainfall, river stage, and groundwater level as inputs. The correlation coefficient values between observed and predicted data were over 0.97. Using the time series models the effect of river stage on groundwater level data was filtered out by setting a constant value for river stage inputs. The filtered data were applied to the hybrid water table fluctuation method in order to estimate the groundwater recharge. The calculated ratios of groundwater recharge to precipitation before and after the barrage construction were 11.0% and 4.3%, respectively. It is expected that the proposed method can be a useful tool for groundwater level prediction and recharge estimation in the riverside area.

Evolution and Changes of Coastal Topography due to Jetty Construction at Namdae River Mouth (도류제 건설 후 남대천 하구의 해안선 생성 및 변화)

  • Kim, In Ho;Lee, Seong Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.315-321
    • /
    • 2008
  • Recently, in the light of environments and utilization, countermeasures to preserve beaches in coastal area are required without depending on such as jetties and breakwaters. The necessity of integrated sand management including not only coastal sediment but also sediment discharge from hinterland rivers is increased so as to establish long-term counterplan for sediment transport. In this regard, the following subjects are examined in this study; efficient ways for discharged sand to be transported from a river to the neighboring coast, the river terrace occurrence and its growth at the river delta, measures to improve storage efficiency of the discharged sand and measures to prevent the sand resources from being discharged into the deep sea during flooding. In recent, A jetty of 260 m length was constructed at Namdae River mouth in the year of 2005 as a countermeasure against the occurrence of sand-bar at river mouth and its close. In this study, a series of numerical experiments were carried out to investigate the characteristics of sediment transport and morphological change due to the construction of jetty at the entrance of Namdae River mouth. Firstly, The sand discharge from Namdae River is quantified by one-dimensional numerical analysis assuming the mixed sand of three different particle diameters. Then, in order to understand the transport behavior of the sand discharge from river and river mouth phenomena the numerical experiments were then conducted to examine the flow behaviors of river efflux and wind generated circulations in coastal area. And, after establishing the numerical model system, which predicts the sea bed changes obtained from the flux model combining with the wave propagation, wave-induced currents and sediment transport models, the sediment transport in the vicinity of Namdae River mouth is analyzed.

Uncertainty Analysis of Hyung San River Discharge due to the methods of Discharge Measurement (유량측정방법에 따른 형산강유량의 불확실도 분석)

  • Seo, Kyu-Woo;Kim, Su-Hyun;Kim, Dai-Gon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1538-1542
    • /
    • 2005
  • This study is to secure more accurate data of the discharge on the measurement by gaining a reliable hydrological data through the comparison the present method of measuring them and the other way that is based ISO. This study suggests the applicable measurement method of the discharge that has reliance through general elements and the analysis of uncertainty by comparing and assaying the data of the Hyung San River that is measured by the present standard. The result of this study makes us realize that we should complement the measurement method of the discharge securing the reliable and accurate hydrological data Hydrological data is very important things to perform domestic river works or install some structure in river or coast. Securing reliable and accurate hydro-data and making a thesis should go on in other to do any construction in river or coast.

  • PDF

Preliminary Ecological Assessments of Water Chemistry, Trophic Compositions, and the Ecosystem Health on Massive Constructions of Three Weirs in Geum-River Watershed

  • Ko, Dae-Geun;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2016
  • Major objectives of the study were to analyze chemical and biological influences of the river ecosystem on the artificial weir construction at three regions of Sejong-Weir (Sj-W), Gongju-Weir (Gj-W), and Baekje-Weir (Bj-W) during 2008-2012. After the weir construction, the discharge volume increased up to 2.9 times, and biological oxygen demand (BOD) and electrical conductivity (EC) significantly decreased (p < 0.05). Also, the decrease of total phosphorus (TP) was also evident after the weir construction, but still hyper-eutrophic conditions, based on criteria by , were maintained. Multi-metric model of Index of Biological Integrity (IBI) showed that IBI values averaged 21.0 (range: 20-22; fair condition) in the Bwc, and 14.3 (range: 12-18; poor condition) in the Awc. The model values of IBI in Sj-W and Gj-W were significantly decreased after the weir construction. The model of Self-Organizing Map (SOM) showed that two groups (cluster I and cluster II) of Bwc and Awc were divided in the analysis based on the clustering map trained by the SOM. Principal Component Analysis (PCA) was similar to the results of the SOM analysis. Taken together, this research suggests that the weir construction on the river modified the discharge volume and the physical habitat structures along with distinct changes of some chemical water quality. These physical and chemical factors influenced the ecosystem health, measured as a model value of IBI.

Numerical Simulation of Sand Bars downstream of Andong Dam (안동댐 하류 하천에서 사주의 재현 모의)

  • Jang, Chang-Lae;Shimizu, Yasuyuki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.379-388
    • /
    • 2010
  • This study examined the physical effects on the river changes downstream of Andong dam and simulated the reproduction of sand bars and the geomorphic changes numerically. The river bed downstream of Aandong dam and Imha dam was decreased and the mean diameter of bed materials was increased, and the number of lower channels was increased. The vegetated area was slightly increased after Andong dam construction. Moreover, the area was abruptly increased after Imha dam construction. The bankfull discharges was estimated to 580 $m^3/s$ after the dams construction and 2,857 $m^3/s$ before the dams. A flood mitigation safety by the dams construction considering return period was increased to 5 to 10 times. As a result of meso-scale regime analysis by using banfull discharge, the regime between single bars and multiple row bars before the dams construction was changed to completely the regime of multiple row bars after the dams. The numerical simulation results showed that the sand bars and lower channels were developed before the dams, and braided river was developed after the dams. This meant that the patterns of sand bars was changed by variable discharge due to the dams construction.

The historical process of dredge fishery according to the construction of the Saemangeum Dike in Jeollabuk-do, Korea (새만금방조제 건설로 인한 전라북도 형망어업의 변천과정)

  • CHOI, Jong-deok;RYU, Dong-ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.327-336
    • /
    • 2017
  • Fishing dredge in Jeollabuk-do began to become widespread in the 1960s and has continued to catch diverse kinds of shellfish in the productive fishing grounds around Dongjin River, Mangyeong River and Geum River estuaries. Since the 1970s, the construction of various large-scale industrial complex and the implementation of Saemangeum reclamation project have resulted in a decrease in main fishing areas and a sharp decline in shellfish production. As a result, dredge fishery has faced many difficulties. Dredge fishery in Jeollabuk-do is carried out with a total of 30 fishing permits as of 2016. Surf clams, hen clams, bladder moon snails, and common orient clams were mainly caught before the construction of Saemangeum dike while comb pen shells, purple whelks and ark shells are mainly caught afterwards. Inside the Saemangeum dike, most fish species have disappeared due to low water level and low salinity, and littleneck clams are caught using a jet pump type of fishing dredge. Outside the dike, the diversity of shellfish species has been reduced; comb pen shells are mainly caught. In this process, a lot of friction occurs due to the use of a reformatted dredge. Therefore, a lot of research needs to be conducted in the near future.

Stream Corridor Ecological Restoration by Small Dam Removal - Removals of Gongreung2 & Gotan Small Dams in Korea - (보 철거를 통한 하천 생물이동통로의 생태적 복원)

  • Ahn, Hong-Kyu;Kim, Si-Nae;Woo, Hyo-Seop
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.1
    • /
    • pp.171-184
    • /
    • 2012
  • 하천 수위를 유지하거나 농업용수를 취수 할 목적으로 조성되는 크고 작은 보는 용수공급 시설로 이용되고 있으나, 하천 생물이동의 차단, 보 상류부의 수질악화, 수변 생물서식처의 변화, 하천경관 훼손과 같은 환경적 문제를 초래하고 있다. 더욱이 도시화가 진행됨에 따라 토지이용의 변화, 시설의 노후화 등으로 매년 50~150개 정도의 보가 폐기되고 있는 현실이다. 본 연구는 하천에 설치되었으나 용도와 기능이 상실된 보를 철거하여 생태적 연속성을 확보하고 하천 본래의 모습으로 되돌려 주며, 하천의 생태적 건강성을 회복 및 향상 시키고자 하였다. 보 철거 시범사업으로 공릉천에 설치된 길이 76m, 높이 1.5m의 공릉2보와, 한탄강에 설치된 길이 190m, 높이 2.8m의 고탄보를 철거하였고, 각 시범사업 대상지의 물리/화학/생태특성 모니터링 분석을 수행하였다. 그 결과 철거 직후 보의 직 상류부에 전체적으로 침식이 발생하고, 보 하류부는 여울, 하중도, 사주, 침식 등 다양한 지형으로 변모되었다. 본 연구를 통하여 하천복원의 취지에 맞는 하천 본래의 모습에 가까운 하천으로 복원하기 위해서는 기능 및 용도가 상실된 보의 경우는 기존의 보체를 개량하거나 어도를 설치하여 주는 것 보다 구조물 자체의 완전철거를 통한 생물 이동통로 조성이 바람직하다고 판단된다.

Flow Analysis Based on the Recovery of Lateral Connectivity in the River (하천 내 횡적 연결성 회복을 통한 흐름 해석)

  • Lee, Jin Woo;Chun, Seung Hoon;Kim, Kyu-Ho;Kim, Chang Wan
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.213-220
    • /
    • 2014
  • Recently, river maintenance is change due to concern for the environment increases. Thus, the river restoration and river environment is best part of river maintenance. In case of Korea, existing river is improvement straightly for flood control and transportation. When the stream channel is straightly, maintain stability is important. Thus, construction of levees along the river. The various river structures for the purpose of flood control and transportation are inhibit factors of longitudinal and lateral connectivity. Connectivity is defined as the maintenance of lateral, longitudinal, and vertical pathways for biological, hydrological, and physical processes. Long-term point of view, increased connectivity is very important for a healthy ecosystem composition. As the first step of river restoration, this study described theory and concept of river continuum and the numerical model was applied to a real topography to simulate the flow analysis with or without segregated and blocked space in the Mankyung river. The results of this study can be utilized to develop the watershed connectivity assessments methods in order to the river restoration.

A Study of River-Bed Variation from Goan to Indogyo due to Flood in Han River (홍수시 한강 하류부의 하상변동에 관한 연구)

  • 박정응;김경수
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.109-119
    • /
    • 1991
  • The river-bed variation and the sediment transport in an alluvial stream are very complicated physical phenomena, especially in a stream where the dam construction prevents the supply of earth and sand from upper tributaries Therefore, the mathematical modeling is needed to establish. The purpose of this study is to apply river-bed variation to the Han River downstream by the conception of gradually varied unsteady flow instead of that of steady flow in order to decrease errors. For the variation and forecast of river-bed, the numerical analysis has been made in this study by way of discharge variation and river-bed variation. In conclusion, the numerical analysis shows that river-bed variation, sediment transport , and their forecast have similarity to natural phenomena and that river-bed variation is greatly affected in sediment transport by discharge variation and retention time(duration). Therefore, the errors of numerical analysis can be reduced by the application of flood data instead of continuous discharge data.

  • PDF