• Title/Summary/Keyword: Ritz Method

Search Result 332, Processing Time 0.029 seconds

A numerical and computer simulation for dynamic stability analysis of 3-unknown graded porous nanoplates using a Chebyshev-Ritz-Bolotin method

  • Wei, Dong
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.379-386
    • /
    • 2021
  • A numerical and computer simulation for dynamic stability analysis of graded porous nanoplates has been provided using a Chebyshev-Ritz-Bolotin approach. The nanoplate has been formulated according to the nonlocal elasticity and a 3-unkown plate model capturing neutral surface location. All of material properties are assumed to be dependent of porosity factor which determines the amount or volume of pores. The nano-size plate has also been assumed to be under temperature and moisture variation. It will be shown that stability boundaries of the nanoplate are dependent on static and dynamical load factors, porosity factor, temperature variation and nonlocal parameter.

On lower bounds of eigenvalues for self adjoint operators

  • Lee, Gyou-Bong
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.477-492
    • /
    • 1994
  • For the eigenvalue problem of $Au = \lambda u$ where A is considered as a semi-bounded self-adjoint operator on a Hilbert space, we are used to apply two complentary methods finding upper bounds and lower bounds to the eigenvalues. The most popular method for finding upper bounds may be the Rayleigh-Ritz method which was developed in the 19th century while a method for computing lower bounds may be the method of intermediate eigenvalue problems which has been developed since 1950's. In the method of intermediate eigenvalue problems (IEP), we consider the original operator eigenvalue problem as a perturbation of a simpler, resolvable, self-adjoint eigenvalue problem, called a base problem, that gives rough lower bounds.

  • PDF

Dynamic response of functionally graded annular/circular plate in contact with bounded fluid under harmonic load

  • Yousefzadeh, Sh.;Jafari, A.A.;Mohammadzadeh, A.;Najafi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.523-533
    • /
    • 2018
  • In this study, the dynamic response of a functionally graded material (FGM) circular plate in contact with incompressible fluid under the harmonic load is investigated. Analysis of the plate is based on First-order Shear Deformation Plate Theory (FSDT). The governing equation of the oscillatory behavior of the fluid is obtained by solving Laplace equation and satisfying its boundary conditions. A new set of admissible functions, which satisfy both geometrical and natural boundary conditions, are developed for the free vibration analysis of moderately thick circular plate. The Chebyshev-Ritz Method is employed together with this set of admissible functions to determine the vibrational behaviors. The modal superposition approach is used to determine the dynamic response of the plate exposed to harmonic loading. Numerical results of the force vibrations and the effects of the different geometrical parameters on the dynamic response of the plate are investigated. Finally, the results of this research in the limit case are compared and validated with the results of other researches and finite element model (FEM).

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory

  • Nejad, Mohammad Zamani;Hadi, Amin;Omidvari, Arash;Rastgoo, Abbas
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.417-425
    • /
    • 2018
  • The main aim of this paper is to investigate the bending of Euler-Bernouilli nano-beams made of bi-directional functionally graded materials (BDFGMs) using Eringen's non-local elasticity theory in the integral form with compare the differential form. To the best of the researchers' knowledge, in the literature, there is no study carried out into integral form of Eringen's non-local elasticity theory for bending analysis of BDFGM Euler-Bernoulli nano-beams with arbitrary functions. Material properties of nano-beam are assumed to change along the thickness and length directions according to arbitrary function. The approximate analytical solutions to the bending analysis of the BDFG nano-beam are derived by using the Rayleigh-Ritz method. The differential form of Eringen's non-local elasticity theory reveals with increasing size effect parameter, the flexibility of the nano-beam decreases, that this is unreasonable. This problem has been resolved in the integral form of the Eringen's model. For all boundary conditions, it is clearly seen that the integral form of Eringen's model predicts the softening effect of the non-local parameter as expected. Finally, the effects of changes of some important parameters such as material length scale, BDFG index on the values of deflection of nano-beam are studied.

Free Vibration Analysis of Combined Cylindrical Shells with an Annular Plate Considering Additional Deformations (추가변형을 고려한 환원판 결합 원통셸의 자유진동해석)

  • Chung Kang;Kim Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.439-446
    • /
    • 2005
  • The theoretical method is developed to investigate the vibration characteristics of the combined cylindrical shells with an annular plate joined to the shell at any arbitrary axial position. The structural rotational coupling between shell and plate is simulated using the rotational artificial spring. For the translational coupling, the continuity conditions for the displacements of shell and plate are used. For the uncoupled annular plate, the transverse motion is considered and the in-plane motions are not. And the additional transverse and in-plane motions of the coupled annular plate by shell deformation are considered in analysis. Theoretical formulations are based on Love's thin shell theory. The frequency equation of the combined shell with an annular plate is derived using the Rayleigh-Ritz approach. The effect of inner-to-outer radius ratio, axial position and thickness of annular plate on vibration characteristics of combined cylindrical shells is studied. To demonstrate the validity of present theoretical method, the finite element analysis is performed.

Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections

  • Andrade, A.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.281-301
    • /
    • 2004
  • The paper begins by presenting a unified variational approach to the lateral-torsional buckling (LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general coordinates and (iii) adopts Trefftz's criterion to perform the bifurcation analysis. The proposed formulation is then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are presented, discussed and, when possible, also compared with values reported in the literature. These numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely ($ii_1$) the minor-to-major inertia ratio, ($ii_2$) the beam length, ($ii_3$) the location of the load point of application and ($ii_4$) the bending moment diagram shape.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.

Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates (초기응력을 받는 직사각형판의 고유진동수 산정식 개발)

  • Park, Sung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.150-159
    • /
    • 2014
  • A simplified method for the calculation of buckling and vibrational characteristics of initially stressed rectangular plate and antisymmetric angle-ply laminated plates is presented in this paper using the natural frequencies under unloading state. The equation of motion of rectangular plate with two opposite edges simply supported is investigated on the basis of Rayleigh-Ritz method and Mindlin plate theory with effect of the curvature term. The relationships of the non-dimensional natural frequencies with initial stresses the coeffcients of critical buckling and the boundaries of the dynamic principal instability region can be characterized by the non-dimensional natureal frequencies under unloading state. Numerical examples are presented to verify the simplified equations and to illustrate potential applications of the analysis.