• Title/Summary/Keyword: Risk-based approach

Search Result 916, Processing Time 0.024 seconds

A Risk Assessment Approach to Safety Management of Electric Railway Facilities (전기철도 전철전력설비의 위험도 평가 기반 안전관리에 관한 연구)

  • Jang, Yoon-Suk;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.960-967
    • /
    • 2009
  • Power supply system of electric railway has a diversity of safety problems since it should supply high electric power to the trains moving high speed with a lot of passengers on board. This paper provides a risk assessment approach to safety management of the electric railway facilities. Construction of database from field accident information, risk assessment and management of the risk are carried out systematically to ensure the safety. The risk assessment includes hazard identification, cause analysis by FTA(Fault Tree Analysis), consequence analysis by EVA(Event Tree Analysis), and loss analysis. In terms of the severity and the probability of the accidents deduced by these analyses, the risk of the accidents is assessed by using a risk matrix designed for electric railway facilities. Based on the risk assessment, possible risk mitigation options are identified and evaluated by analyzing their impact on the risk reduction and their cost benefit ratio. The long-term safety of the electric railway facilities can be ensured by renewal of the risk assessment and the risk mitigation option analysis with continuous accident database update. The proposed approach is applied to the electric railway facilities of Korean railway based on the accident data from 2002 to 2008.

AN INTEGRATED APPROACH TO RISK-BASED POST-CLOSURE SAFETY EVALUATION OF COMPLEX RADIATION EXPOSURE SITUATIONS IN RADIOACTIVE WASTE DISPOSAL

  • Seo, Eun-Jin;Jeong, Chan-Woo;Sato, Seichi
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Embodying the safety of radioactive waste disposal requires the relevant safety criteria and the corresponding stylized methods to demonstrate its compliance with the criteria. This paper proposes a conceptual model of risk-based safety evaluation for integrating complex potential radiation exposure situations in radioactive waste disposal. For demonstrating compliance with a risk constraint, the approach deals with important exposure scenarios from the viewpoint of the receptor to estimate the resulting risk. For respective exposure situations, it considers the occurrence probabilities of the relevant exposure scenarios as their probability of giving rise to doses to estimate the total risk to a representative person by aggregating the respective risks. In this model, an exposure scenario is simply constructed with three components:radionuclide release, radionuclide migration and environment contamination, and interaction between the contaminated media and the receptor. A set of exposure scenarios and the representative person are established from reasonable combinations of the components, based on a balance of their occurrence probabilities and the consequences. In addition, the probability of an exposure scenario is estimated on the assumption that the initiating external factors influence release mechanisms and transport pathways, and its effect on the interaction between the environment and the receptor may be covered in terms of the representative person. This integrated approach enables a systematic risk assessment for complex exposure situations of radioactive waste disposal and facilitates the evaluation of compliance with risk constraints.

Risk Analysis System in Fuzzy Set Theory (퍼지 집합론을 이용한 위험분석 시스템)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.21
    • /
    • pp.29-41
    • /
    • 1990
  • An assessment of risk in industrial and urban environments is essential in the prevention of accident and in the analysis of situations which are hazardous to public health and safety. The risk imposed by a particular hazard increases with the likelihood of occurence of the event, the exposure and the possible consequence of that event. In a traditional approach, the calculation of a quantitative value of risk is usually based on an assignment of numerical values of each of the risk factors. Then the product of the values of likelihood, exposure and consequences called risk score is derived. However vagueness and imprecision in mathematical quantification of risk are equated with fuzziness rather than randomness. In this paper, a fuzzy set theoretic approach to risk analysis is proposed as an alternative to the techniques currently used in the area of systems safety. Then the concept of risk evaluation using linguistic representation of the likelihood, exposure and consequences is introduced. A risk assessment model using approximate reasoning technique based on fuzzy logic is presented to drive fuzzy values of risk and numerical example for risk analysis is also presented to illustrate the results.

  • PDF

A New Approach to Risk Comparison via Uncertain Measure

  • Li, Shengguo;Peng, Jin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.2
    • /
    • pp.176-182
    • /
    • 2012
  • This paper presents a new approach to risk comparison in uncertain environment. Based on the uncertainty theory, some uncertain risk measures and risk comparison rules are proposed. Afterward the bridges are built between uncertain risk measures and risk comparison rules. Finally, several comparable examples are given.

A Study of Qualitative and Quantitative Risk Assessment for Highway Safety Facilities (고속도로 교통안전시설물의 정성적 및 정량적 위험도분석 연구)

  • Ji, Dong-Han;O, Yeong-Tae;Choi, Hyun-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.99-109
    • /
    • 2007
  • Risk elements of highway safety facilities are affected by complex environments. Thus, risk-based approach for traffic safety facilities is needed. For this, in this study, qualitative and quantitative risk assessment methodology and procedure for highway safety facilities is proposed, which can be used as risk-based approach incorporating VE process. Also, for the quantitative risk assessment, event tree using EPDO(Equivalent Property Damage Only) with respect to frequency and magnitude of risk events is introduced. As a result, risk index of alternative 1(140cm) and 2(127(cm) which can be used as performance factor in VE approach are estimated.

Probability Prediction of Stability of Ship by Risk Based Approach (위험도 기반 접근법에 의한 선박 복원성의 확률 예측)

  • Long, Zhan-Jun;Jeong, Jae-Hun;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.2
    • /
    • pp.42-47
    • /
    • 2013
  • Ship stability prediction is very complex in reality. In this paper, risk based approach is applied to predict the probability of a certified ship, which is effected by the forces of sea especially the wave loading. Safety assessment and risk analysis process are also applied for the probabilistic prediction of ship stability. The survival probability of ships encountering with different waves at sea is calculated by the existed statistics data and risk based models. Finally, ship capsizing probability is calculated according to single degree of freedom(SDF) rolling differential equation and basin erosion theory of nonlinear dynamics. Calculation results show that the survival probabilities of ship excited by the forces of the seas, especially in the beam seas status, can be predicted by the risk based method.

Risk-informed design optimization method and application in a lead-based research reactor

  • Jiaqun Wang;Qianglong Wang;Jinrong Qiu;Jin Wang;Fang Wang;Yazhou Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2047-2052
    • /
    • 2023
  • Risk-informed approach has been widely applied in the safety design, regulation, and operation of nuclear reactors. It has been commonly accepted that risk-informed design optimization should be used in the innovative reactor designs to make nuclear system highly safe and reliable. In spite of the risk-informed approach has been used in some advanced nuclear reactors designs, such as Westinghouse IRIS, Gen-IV sodium fast reactors and lead-based fast reactors, the process of risk-informed design of nuclear reactors is hardly to carry out when passive system reliability should be integrated in the framework. A practical method for new passive safety reactors based on probabilistic safety assessment (PSA) and passive system reliability analyze linking is proposed in this paper. New three-dimension frequency-consequence curve based on risk concept with three variables is used in this method. The proposed method has been applied to the determination optimization of design options selection in a 10 MWth lead-based research reactor(LR) to obtain one optimized system design in conceptual design stage, using the integrated reliability and probabilistic safety assessment program RiskA, and the computation resources and time consumption in this process was demonstrated reasonable and acceptable.

Development and Application of a Sensemaking Approach to Community-based Disaster Risk Governance

  • Choi, Choongik;Tatano, Hirokazu;Choi, Junho
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.1
    • /
    • pp.289-301
    • /
    • 2019
  • This paper explores community-based flood disaster risk governance by applying a sensemaking approach. The conceptual sensemaking framework consists of individual experience, dialogue, and socialization components, which together comprise an interconnected system. This study presents a method for applying this framework by using a concerns table and a SWOT analysis to examine the concerns of residents living in a flood plain. A series of community-based workshops on flood risk reduction was conducted with residents of the flood-prone Muraida community in Shiga Prefecture, Japan. During the workshops, residents' concerns regarding flood risk surfaced. This study used an idiographic approach to examine the proceedings of the workshops. SWOT issue analysis was used to examine the strengths and weaknesses in the Muraida community's internal capacities, and examine the opportunities and threats in the external capacities (e.g., local government). Additionally, a SWOT strategy analysis was conducted to identify strategies for knowledge sharing and development of cooperative countermeasures that can be undertaken between the Muraida community and the local government. The results show that the concerns table can not only summarize the main concerns of all workshops, but also provide an understanding of alternative flood risk countermeasures that can be carried out.

Comparative Study of Probabilistic Ecological Risk Assessment (PERA) used in Developed Countries and Proposed PERA approach for Korean Water Environment (확률생태위해성평가(PERA) 선진국 사례분석 및 국내수계에 적합한 PERA 기법 제안)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Woo-Mi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.494-501
    • /
    • 2009
  • Probabilistic Ecological risk assessment (PERA) is extensive approach to qualify and quantify risk on the multi species based on species sensitivity distribution (SSD). As a while, deterministic ecological risk assessment (DERA) considers the comparison of predicted no-effect concentration (PNEC) and predicted exposure concentration (PEC). DERA is used to determine if there is potential risk or no risk, and it doesn't consider the nature variability and the species sensitivity. But PERA can be more realistic and reasonable approach to estimate likelihood or risk. In this study, we compared PERA used in developed countries, and proposed PERA applicable for the Korean water environment. Taxonomic groups were classified as "class" level including Actinopterygill, Branchiopoda, Chlorophyceae, Maxillapoda, Insects, Bivalvia, Gastropoda, Secernentea, Polychaeta, Monocotyldoneae, and Chanophyceae in this study. Statistical extrapolation method (SEM), statistical extrapolation method $_{acutechronicratio}$ ($SEM_{ACR}$) and assessment factor method (AFM) were used to calculate the ecological protective concentration based on qualitative and quantitative levels of taxonomic toxicity data. This study would be useful to establish the PERA for the protection of aquatic ecosystem in Korea.

A Probabilistic Risk-based Cost Estimation Model for Initial-Stage Decision Making on Apartment Remolding Projects (공동주택 리모델링 초기 단계 의사결정을 위한 확률론적 리스크 기반 비용 예측 모델 개발)

  • Lee, Dong-gun;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.2
    • /
    • pp.70-79
    • /
    • 2016
  • The current remodeling cost estimation process is not only dependent on the historical data of new building construction, but it also has a poor linkage with risk-based estimation approach. As such, there is a high risk of falling short of initial budget. To overcome this, a risk-based estimation approach is necessary by providing a probabilistic estimation in consideration of the potential risk factors in conducting the remodeling projects. In addition, the decision-making process should be linked with the risk-based estimation results in stead of intuitive and/or experience-based estimation. This study provides a probabilistic estimation process for residential remodeling projects by developing a detailed methodology in which a step-by-step approach can be achieved. The new proposed estimation approach can help in decision-making for remodeling projects in terms of whether to proceed or not, by effectively reflecting the potential risk factors in the early stage of the project. In addition, the study can enhance the reliability of the estimation results by developing a sustainable estimation process model where a risk-based evaluation can be accomplished by setting up the cost-risk relationship database structure.