• Title/Summary/Keyword: Risk Probability

Search Result 1,139, Processing Time 0.034 seconds

Establishing Probability-Based Warrants for Left-Turn Lanes at Unsignalized Intersections (확률기반 비신호교차로의 좌회전 전용차로 설치 기준 정립)

  • Moon, Jaepil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.42-54
    • /
    • 2018
  • This study is to establish the traffic volume-based warrants of left-turn lanes in unsignalized intersections based on a risk probability methodology. This study applied a risk probability of a potential rear-end collision between a left-turn vehicle and the immediately following through vehicle. With the shifted negative exponential model and the compound probability theorem, the risk probability can be expressed as the function of directional volumes, opposing volumes and the percentage of left-turns for a two-lane and four-land highway, respectively. The warrants of installing left-turn lanes on unsignalized intersections were developed with the risk probability. The warrants define the total approaching and opposing volumes to encourage a left-turn lane as a function of operating speed, percentage of left-turn, and number of lanes.

Probability Based Risk Evaluation Techniques for the Small-Sized Sea Floater (소형 해상 부유체의 확률 기반 위기평가기법)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.795-801
    • /
    • 2012
  • This paper describes theoretical approach methodology for the Probability based risk Evaluation Techniques (PET) to monitor the risk levels of small-sized sea floater as like a yacht pier. The risk decision-making process by risk criteria with five-step scales is the core concepts of PET. These five-step scales are calculated from cumulative probability distribution of response functions for the sea floater motions using closed-form expressions. In addition, The risk decision-making process of PET with the risk criteria is proposed in this work. To verify the usability of PET, simulation experiments are carried out using mimic signals with the electrical specifications of ADIS16405 sensor that is to be use as measurement tool for the floater motions. As results from experiments, the risk evaluation error by PET shows 0.38 levels in maximum 5.0 levels. These results clearly shown that the proposed PET can be use as the monitoring techniques.

Identification of Prevailing Risk Attitudes in Various Risk Situations (다양한 위험상황에서의 지배적 위험태도의 파악)

  • Kang, Tae-Geon;Cho, Sung-Ku
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.437-447
    • /
    • 1999
  • Previous researches on risk attitudes or on the typical utility functions have mostly focused on how the risk attitude of decision maker varies when changes are made in one or two lottery reference points such as consequence domain and magnitude of probability under assumed risk situations represented by simple lotteries. It is, however, very difficult to forecast dominant risk attitudes under risk situations which exhibit a complex combination of many reference points. In this study, twelve risk situations which a decision maker may confront in real decision-making situations were formulated by combining in various ways three reference points, that is, magnitude of probability, consequence domain, and magnitude of gain or loss. Then through a questionnaire dominant risk attitudes under every assumed risk situation were investigated, and the general shape of utility function implied by the experimental results were derived. Results of the present study show that none of the three reference points have dominant effect over the others due to complicated interaction between them, and given the twelve risk situations the observed risk attitude widely varies from strong risk taking to strong risk aversion.

  • PDF

Failure Probability Assessment for Risk Analysis of Concrete Gravity Dam under Flood (홍수 시 콘크리트 중력식댐의 위험도 분석을 위한 파괴확률 산정)

  • Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han;Lim, Jeong-Yeul
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.58-66
    • /
    • 2016
  • This study aims to estimate the failure probability of concrete gravity dams for their risk analysis under flood situation. To the end, failure modes of concrete gravity dams and their limit state functions are proposed based on numerous review of domestic and international literatures on the dam failure cases and design standards. Three failure modes are proposed: overturning, sliding, and overstress. Based on the failure modes the limit state functions, the failure probability is assessed for a weir section and a non-weir section of a dam in Korea. As water level is rising from operational condition to extreme flood condition, the failure probability is found to be raised up to the warning condition, especially for overturning mode at the non-weir section. The result can be used to reduce the risk of the dam by random environmental variables under possible flood situation.

Optimal Bayesian MCMC based fire brigade non-suppression probability model considering uncertainty of parameters

  • Kim, Sunghyun;Lee, Sungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2941-2959
    • /
    • 2022
  • The fire brigade non-suppression probability model is a major factor that should be considered in evaluating fire-induced risk through fire probabilistic risk assessment (PRA), and also uncertainty is a critical consideration in support of risk-informed performance-based (RIPB) fire protection decision-making. This study developed an optimal integrated probabilistic fire brigade non-suppression model considering uncertainty of parameters based on the Bayesian Markov Chain Monte Carlo (MCMC) approach on electrical fire which is one of the most risk significant contributors. The result shows that the log-normal probability model with a location parameter (µ) of 2.063 and a scale parameter (σ) of 1.879 is best fitting to the actual fire experience data. It gives optimal model adequacy performance with Bayesian information criterion (BIC) of -1601.766, residual sum of squares (RSS) of 2.51E-04, and mean squared error (MSE) of 2.08E-06. This optimal log-normal model shows the better performance of the model adequacy than the exponential probability model suggested in the current fire PRA methodology, with a decrease of 17.3% in BIC, 85.3% in RSS, and 85.3% in MSE. The outcomes of this study are expected to contribute to the improvement and securement of fire PRA realism in the support of decision-making for RIPB fire protection programs.

Statistical Probability Analysis of Storage Temperatures of Domestic Refrigerator as a Risk Factor of Foodborne Illness Outbreak (식중독 발생 위해인자로서 가정용 냉장고의 온도에 대한 확률분포 분석)

  • Bahk, Gyung-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.373-376
    • /
    • 2010
  • The objective of this study was to present the proper probability distribution model based on the data obtained from surveys on domestic refrigerator food storage temperatures in home. Domestic refrigerator temperatures were determined as risk factors in foodborne disease outbreaks for microbial risk assessment (MRA). The temperature was measured by directly visiting 139 homes using a data logger from May to September of 2009. The overall mean temperature for all the refrigerators in the survey was $3.53{\pm}2.96^{\circ}C$, with 23.6% of the refrigerators measuring above $5^{\circ}C$. Probability distributions were also created using @RISK program based on the measured temperature data. Statistical ranking was determined by the goodness of fit (GOF, i.e., the Kolmogorov-Smirnov (KS) or Anderson-Darling (AD) test) to determine the proper probability distribution model. This result showed that the LogLogistic (-10.407, 13.616, 8.6107) distribution was found to be the most appropriate for the MRA model. The results of this study might be directly used as input variables in exposure evaluation for conducting MRA.

Risk Assessment for Marine Pilot Occupational Accidents using Fault Tree and Event Tree Analysis

  • Camliyurt, Gokhan;Choi, Sea-Am;Kim, So-Ra;Guzel, Ahmet Turgut;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.5
    • /
    • pp.400-408
    • /
    • 2022
  • Maritime transportation is one of the most complicated and hazardous business fileds. Maritime accidents still occur despite several precautions since maritime is exposed to natural factors more than any other industries. In this harsh environment as a part of their job, marine pilots often embark/disembark to/ from vessels and confront life-endangering personal accidents. In the maritime field, several risk assessments are applied. However, all of them could not evaluate occupational accident risk for maritime pilot specifically. This paper performs specific risk analysis using the bow-tie method based on past accident records. This paper aims to qualify root causes and quantify root causes by importance level according to occurrence probability. As a result of analysis, occupational accident occurrence probability is found to be 14%, indicating that accident occurrence rate is significantly high. Hence, the probability of root causes triggering accidents and accident occurrence probability can be ascertained so that preventive measurements can be implemented. Besides theoretical achievement, this paper provides safety awareness to marine pilots, Marine Pilot Organizations, and ship crew who play a key role during marine pilots' transfer.

Comparison of event tree/fault tree and convolution approaches in calculating station blackout risk in a nuclear power plant

  • Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.141-146
    • /
    • 2024
  • Station blackout (SBO) risk is one of the most significant contributors to nuclear power plant risk. In this paper, the sequence probability formulas derived by the convolution approach are compared with those derived by the conventional event tree/fault tree (ET/FT) approach for the SBO situation in which emergency diesel generators fail to start. The comparison identifies what makes the ET/FT approach more conservative and raises the issue regarding the mission time of a turbine-driven auxiliary feedwater pump (TDP), which suggests a possible modeling improvement in the ET/FT approach. Monte Carlo simulations with up-to-date component reliability data validate the convolution approach. The sequence probability of an alternative alternating current diesel generator (AAC DG) failing to start and the TDP failing to operate owing to battery depletion contributes most to the SBO risk. The probability overestimation of the scenario in which the AAC DG fails to run and the TDP fails to operate owing to battery depletion contributes most to the SBO risk overestimation determined by the ET/FT approach. The modification of the TDP mission time renders the sequence probabilities determined by the ET/FT approach more consistent with those determined by the convolution approach.

A Study on Generation Methodology of Crime Prediction Probability Map by using the Markov Chains and Object Interpretation Keys (마코프 체인과 객체 판독키를 적용한 범죄 예측 확률지도 생성 기법 연구)

  • Noe, Chan-Sook;Kim, Dong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.107-116
    • /
    • 2012
  • In this paper we propose a method that can generate the risk probability map in the form of raster shape by using Markov Chain methodology applied to the object interpretation keys and quantified risk indexes. These object interpretation keys, which are primarily characteristics that can be identified by the naked eye, are set based on the objects that comprise the spatial information of a certain urban area. Each key is divided into a cell, and then is weighted by its own risk index. These keys in turn are used to generate the unified risk probability map using various levels of crime prediction probability maps. The risk probability map may vary over time and means of applying different sets of object interpretation keys. Therefore, this method can be used to prevent crimes by providing the ways of setting up the best possible police patrol beat as well as the optimal arrangement of surveillance equipments.

Consumer Misperceptions, Product Liability Law and Product Safety

  • Lee Jong-In
    • International Journal of Human Ecology
    • /
    • v.6 no.2
    • /
    • pp.63-72
    • /
    • 2005
  • This paper considered the impact of changing the product liability rule from consumer to producer liability on product safety under asymmetric information. In particular, it has been attempted to remove several constraints on antecedent studies. The main results of the study are as follows: under the misperception of the risk on a product, consumers may underestimate the probability of product failure. In this case, the accident rate can be lowered under the producer's liability rule. However, even under the asymmetric information, a consumer's estimation on the probability may be converged with the expected risk level, which could be called the 'rational expectation.' In this situation the probability of product failure can be lowered under the strict liability with contributory negligence. Additionally, it is possible to reduce the probability of product failure when a legal rule that imposes liability on cheapest cost avoider is admitted.