• Title/Summary/Keyword: Risk Assessments

검색결과 428건 처리시간 0.03초

Effect of exercise interventions on sarcopenic obesity in middle-aged and older adults: a comprehensive review

  • Hye-Ryoung Kim
    • Journal of Korean Biological Nursing Science
    • /
    • 제25권4호
    • /
    • pp.256-265
    • /
    • 2023
  • Purpose: This study examined the definitions, diagnostic criteria, and measurements of sarcopenic obesity and identified effective exercise interventions that improve cardiometabolic outcomes in middle-aged and older adults, in whom the prevalence of sarcopenic obesity is increasing. Methods: This comprehensive review followed the principles of literature search, data extraction, and review, as described in the PRISMA 2009 guidelines. Results: The 11 articles included in this study presented different concepts of sarcopenic obesity. Exercise interventions for sarcopenic obesity varied in their effects. Resistance exercise improved muscle mass and physical function, while aerobic exercise primarily impacted obesity and cardiometabolic indicators. Combined exercise had mixed results across indicators. Conclusion: This study addressed a pressing public health concern in the context of an aging population, acknowledged the unique challenges of sarcopenic obesity, and attempted to clarify definitions and assessment methods, while identifying effective exercise interventions to reduce cardiometabolic risk. Sarcopenic obesity is a multifaceted condition with varying definitions and diagnostic criteria. Its association with cardiometabolic risk underscores the need for comprehensive assessments considering both muscle and obesity indicators. While exercise interventions hold promise for managing sarcopenic obesity, further research is required to establish effective strategies.

A risk management methodology for maritime logistics and supply chain applications

  • Mokhtari, Kambiz;Ren, Jun
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.137-150
    • /
    • 2014
  • In the marine industry although there has been significant growth towards safety, security and risk assessments or risk-based strategies such as marine insurance and regulations to avoid the risks of damage to properties and the environment or the prospect of premature death caused by accidents etc, the moves toward managing the risks which are linked directly to the business functions and decision making processes have been very slow. Furthermore in the marine industry most perceptions, methodologies and frameworks of dealing with hazards, risks, safety and security issues are for their assessment rather than their management. This trend reveals the fact that in different marine industry sectors such as logistics and shipping there is a lack of coherent risk management framework or methodology from which to understand the risk-based decisions especially for the purpose of design, construction, operation, management and even decommissioning of the marine related applications. On the other hand risk management is not yet viewed holistically in the marine industry in order to, for example, assign a right person, i.e. risk manager, who can act as a coordinator and advisor with responsibilities that are only specific to risk management. As a result this paper, by examining the present physical borders and risk-based activities in the marine industry, aims to propose an appropriate risk management methodology in addition to the emergent role of risk managers which will enable the industry users initially to become familiar with the concept of risk management at its holistic level. In the later stages this eventually can lead to development of risk management capabilities at an exclusive level and its integration into the marine industry functions in future.

Recent research towards integrated deterministic-probabilistic safety assessment in Korea

  • Heo, Gyunyoung;Baek, Sejin;Kwon, Dohun;Kim, Hyeonmin;Park, Jinkyun
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3465-3473
    • /
    • 2021
  • For a long time, research into integrated deterministic-probabilistic safety assessment has been continuously conducted to point out and overcome the limitations of classical ET (event tree)/FT (fault tree) based PSA (probabilistic safety assessment). The current paper also attempts to assert the reason why a technical transformation from classical PSA is necessary with a re-interpretation of the categories of risk. In this study, residual risk was classified into interpolating- and extrapolating-censored categories, which represent risks that are difficult to identify through an interpolation or extrapolation of representative scenarios due to potential nonlinearity between hardware and human behaviors intertwined in time and space. The authors hypothesize that such risk can be dealt with only if the classical ETs/FTs are freely relocated, entailing large-scale computation associated with physical models. The functional elements that are favorable to find residual risk were inferred from previous studies. The authors then introduce their under-development enabling techniques, namely DICE (Dynamic Integrated Consequence Evaluation) and DeBATE (Deep learning-Based Accident Trend Estimation). This work can be considered as a preliminary initiative to find the bridging points between deterministic and probabilistic assessments on the pillars of big data technology.

Risk Assessment for Marine Pilot Occupational Accidents using Fault Tree and Event Tree Analysis

  • Camliyurt, Gokhan;Choi, Sea-Am;Kim, So-Ra;Guzel, Ahmet Turgut;Park, Young-Soo
    • 한국항해항만학회지
    • /
    • 제46권5호
    • /
    • pp.400-408
    • /
    • 2022
  • Maritime transportation is one of the most complicated and hazardous business fileds. Maritime accidents still occur despite several precautions since maritime is exposed to natural factors more than any other industries. In this harsh environment as a part of their job, marine pilots often embark/disembark to/ from vessels and confront life-endangering personal accidents. In the maritime field, several risk assessments are applied. However, all of them could not evaluate occupational accident risk for maritime pilot specifically. This paper performs specific risk analysis using the bow-tie method based on past accident records. This paper aims to qualify root causes and quantify root causes by importance level according to occurrence probability. As a result of analysis, occupational accident occurrence probability is found to be 14%, indicating that accident occurrence rate is significantly high. Hence, the probability of root causes triggering accidents and accident occurrence probability can be ascertained so that preventive measurements can be implemented. Besides theoretical achievement, this paper provides safety awareness to marine pilots, Marine Pilot Organizations, and ship crew who play a key role during marine pilots' transfer.

폐광산 주변 토양 중금속 오염노출농도 우려기준과 위해성 비교 연구 (Comparison of Heavy Metal Pollutant Exposure and Risk Assessments in an Abandoned Mine Site)

  • 최진원;유근제;구명서;박준홍
    • 대한토목학회논문집
    • /
    • 제32권4B호
    • /
    • pp.261-266
    • /
    • 2012
  • 본 연구에서는 중금속에 의한 토양환경영향평가 시 노출농도 기반의 평가와 위해성 기반의 평가를 비교하였다. 이를 위해서 폐광산 지역에서 중금속 오염노출을 조사하였다. 발암위해도와 비발암위해도 평가 결과, 토양섭취의 영향이 토양접촉의 영향보다 지배적이었고, 우려기준을 초과하는 경우에는 총 위해도도 기준을 초과하였다. 우려기준을 초과하지 않는 경우도 대부분 총 위해도 기준을 초과하였으므로, 위해도 기반의 평가가 노출농도 기반의 평가보다 더 민감한 기준이라는 기존 인식을 확인하였다. 하지만 토양접촉 경로의 비발암위해성 결과들의 심층 분석 결과, 우려기준을 초과함에도 위해도 기준을 초과하지 않는 경우들이 검출되었다. 본 연구에서는 신뢰성 있는 폐광산지역의 토양오염정화사업 타당성 평가를 위해서는 현재 노출농도기반의 평가 위주에서 위해성 기반 평가로의 정책 전환의 필요성이 확인되었고, 위해도 원단위 및 판단기준의 객관적 설정을 위한 연구 필요성이 제시되었다.

SUMRAY: R and Python Codes for Calculating Cancer Risk Due to Radiation Exposure of a Population

  • Michiya Sasaki;Kyoji Furukawa;Daiki Satoh;Kazumasa Shimada;Shin'ichi Kudo;Shunji Takagi;Shogo Takahara;Michiaki Kai
    • Journal of Radiation Protection and Research
    • /
    • 제48권2호
    • /
    • pp.90-99
    • /
    • 2023
  • Background: Quantitative risk assessments should be accompanied by uncertainty analyses of the risk models employed in the calculations. In this study, we aim to develop a computational code named SUMRAY for use in cancer risk projections from radiation exposure taking into account uncertainties. We also aim to make SUMRAY publicly available as a resource for further improvement of risk projection. Materials and Methods: SUMRAY has two versions of code written in R and Python. The risk models used in SUMRAY for all-solid-cancer mortality and incidence were those published in the Life Span Study of a cohort of the atomic bomb survivors in Hiroshima and Nagasaki. The confidence intervals associated with the evaluated risks were derived by propagating the statistical uncertainties in the risk model parameter estimates by the Monte Carlo method. Results and Discussion: SUMRAY was used to calculate the lifetime or time-integrated attributable risks of cancer under an exposure scenario (baseline rates, dose[s], age[s] at exposure, age at the end of follow-up, sex) specified by the user. The results were compared with those calculated using another well-known web-based tool, Radiation Risk Assessment Tool (RadRAT; National Institutes of Health), and showed a reasonable agreement within the estimated confidential interval. Compared with RadRAT, SUMRAY can be used for a wide range of applications, as it allows the risk projection with arbitrarily specified risk models and/or population reference data. Conclusion: The reliabilities of SUMRAY with the present risk-model parameters and their variance-covariance matrices were verified by comparing them with those of the other codes. The SUMRAY code is distributed to the public as an open-source code under the Massachusetts Institute of Technology license.

근거에 기반한 의약품의 유익성-위해성 평가 (Evidence-Based Benefit-Risk Assessment of Medication)

  • 이의경
    • 보건의료기술평가
    • /
    • 제1권1호
    • /
    • pp.22-26
    • /
    • 2013
  • Objectives: Balancing benefits and risks through the drug life cycle has been discussed for many decades. The objective of this study was to review the processes and tools currently proposed for benefit-risk assessment of medicinal drugs. It aimed to establish scientific and efficient drug safety management system based on the synthetic analysis of benefit-risk evidence. Methods: We conducted a review of exiting literatures published by regulatory agencies or initiatives. Not only quantitative methodologies but also qualitative method were compared to understand their key characteristics for the benefit and risk assessment of drugs. Results: Recently, benefit-risk assessments have more structured approaches to decision making as part of regulatory science. Regulatory agencies such as European Medicines Agency, FDA have prepared plans to apply benefit-risk assessment to regulatory decision making. Also many initiatives such as IMI (Innovative Medicine Initiative) have conducted research and published reports about benefit-risk assessment. For benefit-risk assessment, four kinds of methods are necessary. Frameworks such as BRAT (Benefit Risk Action Team) framework, PrOACT-URL provide guidance for the whole process of decision-making. Metrics are measurements of risk benefit. The estimation techniques are methods to synthesis and combine evidences from various sources. The utility survey techniques are necessary to explicit preferences of various outcome from stakeholders. Conclusion: There is the lack of widely accepted, validated model for benefit-risk assessment. Nor there is an agreement among academia, industry, and government on methods for the quantitative valuation. It is also limited by available evidence and underlying assumptions. Nevertheless, benefit-risk assessment is fundamental to improve transparency, consistency and predictability for decision making through the structured systematic approaches.

A Comparative Review of Radiation-induced Cancer Risk Models

  • Lee, Seunghee;Kim, Juyoul;Han, Seokjung
    • Journal of Radiation Protection and Research
    • /
    • 제42권2호
    • /
    • pp.130-140
    • /
    • 2017
  • Background: With the need for a domestic level 3 probabilistic safety assessment (PSA), it is essential to develop a Korea-specific code. Health effect assessments study radiation-induced impacts; in particular, long-term health effects are evaluated in terms of cancer risk. The objective of this study was to analyze the latest cancer risk models developed by foreign organizations and to compare the methodology of how they were developed. This paper also provides suggestions regarding the development of Korean cancer risk models. Materials and Methods: A review of cancer risk models was carried out targeting the latest models: the NUREG model (1993), the BEIR VII model (2006), the UNSCEAR model (2006), the ICRP 103 model (2007), and the U.S. EPA model (2011). The methodology of how each model was developed is explained, and the cancer sites, dose and dose rate effectiveness factor (DDREF) and mathematical models are also described in the sections presenting differences among the models. Results and Discussion: The NUREG model was developed by assuming that the risk was proportional to the risk coefficient and dose, while the BEIR VII, UNSCEAR, ICRP, and U.S. EPA models were derived from epidemiological data, principally from Japanese atomic bomb survivors. The risk coefficient does not consider individual characteristics, as the values were calculated in terms of population-averaged cancer risk per unit dose. However, the models derived by epidemiological data are a function of sex, exposure age, and attained age of the exposed individual. Moreover, the methodologies can be used to apply the latest epidemiological data. Therefore, methodologies using epidemiological data should be considered first for developing a Korean cancer risk model, and the cancer sites and DDREF should also be determined based on Korea-specific studies.

RAPID-N을 이용한 국내 지진 발생 시 화학시설 Natech 위험성 평가 (Natech Risk Assessment of Chemical Facilities in the Event of Earthquake in Korea using RAPID-N)

  • 박제혁;연응진;이학태;정승호
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.111-118
    • /
    • 2019
  • Accidents occurring due to natural disasters in chemical process facilities where technologies are concentrated can cause secondary damage. The concept of the relationship between natural disasters and highly intensive technologies has evolved into the Natech (Natural Hazards Triggered Technological Disaster) research. Currently, the number of earthquakes is increasing all over the Korean peninsula. To assess the risk of Natech when an earthquake has occurred in South Korea, the Rapid Natech Risk Assessment Tool (RAPID-N) developed by the European Commission's Joint Research Center (EC JRC) was used in the present study. The RAPID-N can be used for Natech risk assessment based on mapping and can be utilized for sufficient preparation for reduction of the effects of Natech accidents. A total of 261 chemical facilities actually existing in Pohang were initially analyzed to select eight facilities and the Pohang earthquake that occurred in 2017 was implemented in the RAPID-N utilizing the shake map. High risk areas were selected through Natech risk assessments for the selected eight work places and countermeasures for the areas were suggested. High risk areas exist depending on the location, since the damage influence ranges could be overlapped and each chemical facility has an independent probability of Natech. Therefore, studies on Natech emergency plans and emergency evacuation routes should be actively conducted considering such high risk areas. The present study was conducted to demonstrate the feasibility of Natech risk assessment in South Korea through the RAPID-N. These findings can be used as a reference material to lay a foundation for Natech risk assessment and related policies in South Korea.

무인항공기 SORA 위험평가를 위한 지상위험도 및 완화수단 분석 (A Study on Ground Risk and Mitigation in the SORA Methodology)

  • 권태화;장세원;전승목
    • 항공우주시스템공학회지
    • /
    • 제16권3호
    • /
    • pp.52-62
    • /
    • 2022
  • 특정범주 무인항공기 운용의 위험평가를 위해서 개발된 SORA 방법론에서는 지상 및 공중위험 등급을 결정하고 해당 위험도에 대한 특정보증 무결성 수준을 나타내는 SAIL이 할당되어 제안된 운용에 대한 운용 안전도 목표를 적절한 강건도 수준으로 입증해야 한다. 인명의 수송은 제외하는 특정범주 무인항공기 운용의 특성상 지상의 인명이 가장 먼저 고려되어야 하는 위험의 대상이며, 여기서 평가된 지상위험도는 공중위험도와 함께 SAIL의 할당에서도 중요한 역할을 한다. 위험도는 초기에 결정된 등급에 세 가지 종류의 완화수단이 적용되는 것으로 등급이 경감되어 최종 등급이 결정된다. 본 논문에서는 무인항공기의 특정범주 운용에 대한 위험평가 중에서 지상위험 등급의 결정과 완화수단의 적용을 통한 등급의 감소 및 최종 위험 등급에 따른 SAIL과 OSO에 미치는 영향에 대해서 분석하였다.