• Title/Summary/Keyword: Rising velocity

Search Result 161, Processing Time 0.028 seconds

Development of Combustion System for Solid Oxide Fuel Cell System (고체산화물 연료전지용 예혼합 연소시스템 개발)

  • Jo, Soonhye;Lee, Pilhyong;Cha, Chunloon;Hong, Seongweon;Hwang, Sangsoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96.1-96.1
    • /
    • 2011
  • Solid oxide fuel cells(SOFCs) can convert the chemical energy of fuel into electricity directly. With the rising fuel prices and stricter emission requirement, SOFCs have been widely recognized as a promising technology in the near future. In this study, lean premixed flame using the orifice swirl burner was analyzed numerically and experimentally. We used the program CHEMKIN and the GRI 3.0 chemical reaction mechanism for the calculation of burning velocity and adiabatic flame temperature to investigate the effects of equivalence ratio on the adiabatic flame temperature and burning velocity respectively. Burning velocity of hydrogen was calculated by CHEMKIN simulation was 325cm/s, which was faster than that of methane having 42 cm/s at the same equivalence ratio. Also Ansys Fluent was used so as to analysis the performance with alteration of swirl structure and orifice mixer structure. This experimental study focused on stability and emission characteristics and the influence of swirl and orifice mixer in Solid Oxide Fuel Cell Systme burner. The results show that the stable blue flame with different equivalence ratio. NOx was measured below 20 ppm from equivalence ratios 0.72 to 0.84 and CO which is a very important emission index in combustor was observed below 160 ppm under the same equivalence region.

  • PDF

Numerical Simulation of Bubble-Free Surface Interaction (기포-자유표면 상호작용에 대한 수치적 고찰)

  • Yang Chan-Kyu;Kim Hyeon-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.48-57
    • /
    • 1999
  • This paper deals with the numerical simulation of the behavior of single bubble rising near the free surface. Volume fraction of fluid (VOF) method with continuum surface force (CSF) model, the well known method for two phase flow simulation is adopted. A bubble of spherical shape positioned beneath the free surface is assumed at the initial stage. The difference according to the fluid properties of surrounding medium is examined. Simulation results are depicted and explained with the time history of bubble shape, velocity field and vorticity distribution.

  • PDF

Numerical Analysis of a Gliding Arc Plasma Scrubber for CO2 Conversion (이산화탄소 전환을 위한 글라이딩 아크 플라즈마 스크러버의 수치계산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.339-349
    • /
    • 2014
  • $CO_2$ emission has been gradually increased due to rising fossil fuel use. A gliding arc plasma scrubber (GAPS) was proposed to destruct $CO_2$. For optimum design of GAPS, a CFD analysis has been conducted in different configuration for the system. The parameters considered included gas injection velocity at the nozzle and gas flow rate to gap between electrodes. The reactor configuration affected velocity fields which caused changes in the mixture fraction and the retention time. The mixing effect of $CO_2$ and supplied gas ($CH_4$ and steam) was enhanced by installing a orifice baffle. This revealed that the orifice baffle is effective in $CO_2$ conversion by positioning the reactants in the gas into the center of plasma discharge.

Development and Characterization of High-Performance Acoustic Emission Sensors (음향방출 신호의 검출을 위한 공진형 및 광대역 센서 제작과 특성평가)

  • Kim, B.G.;Kim, Y.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.9-17
    • /
    • 1993
  • Three types of piezoelectric sensors to detect acoustic emission signals were developed and characterized. Epicentral displacement and velocity of a plate to have infinite boundary were calculated by convolution between a Green's function and a simulated source time function to show parabolic rising characteristic. The sensor calibration system set up was composed of a steel plate, a glass capillary, an indentor and a load cell indicator The transient elastic signals were detected by the sensors. The results were compared with the theoretical results and Fast Fourier Transformed. As the results, the sensor fabricated using a disk shape of a piezoelectric PZT element showed resonant characteristics. The sensors fabricated using a conical shape PZT element and a PVDF polymer film showed the wide band characteristics for particle displacement and velocity, respectively. The calculated results showed good agreements with the transient responses in the cases of the wide band sensors and it was confirmed that the simulated source time function had been properly assumed.

  • PDF

Numerical analysis of chromium deposition through the SOFC cathode channel (고체 산화물 연료전지의 공기극 유로내 크롬 피독에 관한 전산해석)

  • Park, Joon-Guen;Bae, Joong-Myeon;Lee, Shin-Ku;Nabielek, Heinz
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.372-375
    • /
    • 2006
  • SOFC is a high temperature fuelcell with many advantages, but it also have several demerits. One of the Issues is cathode poisoning of Cr coming from stainless steel interconnects. Diffusion process of Cr evaporated from the surface of interconnect steel was calculated by using CFD technique to understand factors for Cr deposition. It has been cleared that factors concerned in Cr deposition and how they affect Cr deposition. Major variables for Cr deposit ion are diffusion coefficient, air velocity and temperature If diffusion coefficient decreases, Cr concentration increases in the air but decreases on the cathode surface. Increasing in air velocity, Cr concentration decreases in the air and on the cathode surface. Increase in temperature leads to rising Cr concentration on the cathode surface because of diffusion coefficient increment.

  • PDF

A Study on the solid-liquid helical flow in a slim hole Annulus (Slim hole 환형관내 고-액 2상 헬리컬 유동에 관한 연구)

  • Woo, Nam-Sub;Hwang, Young-Kyu;Yun, Chi-Ho;Kim, Young-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.465-470
    • /
    • 2006
  • An experimental investigation is carried out to study 2-phase vertically upward hydraulic transport of solid particles by water and non-Newtonian fluids in a slim hole concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in viscoelastic fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, etc. In this study a clear acrylic pipe was used in order to observe the movement of solid particles. Annular fluid velocities varied from 0.2 m/s to 3.0 m/s. Pressure drops and average flow rate and particle rising velocity are measured. For both water and 0.2% CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

  • PDF

A Study on the Development of an Expert System for $CO_2$ Laser Cutting ($CO_2$레이저 절단을 위한 전문가 시스템 개발에 관한 연구)

  • 최은석;한국찬;나석주
    • Journal of Welding and Joining
    • /
    • v.12 no.3
    • /
    • pp.71-81
    • /
    • 1994
  • Laser cutting is experiencing a rising worldwide acceptance in the industry. Expert systems are necessary for the systematic arrangement and searching of experimental data existing in journal papers, job handbooks, etc.. This paper proposes an expert system for the selection of the appropriate laser cutting variables from the available database. Optimum cutting conditions according to the given cutting velocity were searched and qualitative comments which are difficult to be used as database variables were shown at each velocity using the binary and fuzzy inference. These comments could be informative to unskilled operators of the laser cutting process. Typical cutting conditions of the mild steel and stainless steel were included and the working range and quality variations were displayed graphically. The proposed algorithm was implemented in an IBM compatible personal computer as an expert system for CO$_{2}$ laser cutting to derive the optimum cutting conditions by using the turbo prolog.

  • PDF

Investigation of interference current distribution in a long line scallop cage aquaculture (수하식 큰가리비 양식의 채롱간 조류의 흐름 간섭현상 규명)

  • Kim, Hyun-Young;OH, Bong-Se;Cha, Bong-Jin;Park, Mi-Seon
    • The Korean Journal of Malacology
    • /
    • v.30 no.3
    • /
    • pp.273-279
    • /
    • 2014
  • The mass mortalities have been occurring of Korean scallop Patinopecten yessoensis from 1997's to now in Korea east sea. Cages behavior and interference effect (common name; curtain effect) between scallop cages were investigated in culture grounds on the eastern coastal waters of Korea for understand to mechanism of rising about mass mortalities of Korean scallop quickly. The first experiment was carried out in circulating water channel to assess inclination angel from relationship between velocity and cages interval, velocity with culture cages position. An angle of inclination of scallop culture cages were 94.6 to 92.3 degree under a several velocity which were from 0.1 m/s and 131.9 to 118.1 degree under 0.5 m/s with cages interval were 1 m, 94.3 to 91.0 degree under velocity is 0.1 m/s and 133.2 to 122.4 degree under 0.5 m/s with cages interval were 1.5 m and 94.6 to 96.4 degree under velocity is 0.1 m/s and 131.7 to 131.8 under 0.5 m/s with cages interval were 2 m. The second experiment was designed to prove the tank test. Velocities were measured inside and outside of the scallop culture ground at eastern sea of Korea. The velocity of inside of the culture was the slowest as 0.1m/s. In this result, interference between former cage and after cage was occurred.

The effects of peak ground velocity of near-field ground motions on the seismic responses of base-isolated structures mounted on friction bearings

  • Tajammolian, H.;Khoshnoudian, F.;Talaei, S.;Loghman, V.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1259-1281
    • /
    • 2014
  • This research has been conducted in order to investigate the effects of peak ground velocity (PGV) of near-field earthquakes on base-isolated structures mounted on Single Friction Pendulum (SFP), Double Concave Friction Pendulum (DCFP) and Triple Concave Friction Pendulum (TCFP) bearings. Seismic responses of base-isolated structures subjected to simplified near field pulses including the forward directivity and the fling step pulses are considered in this study. Behaviour of a two dimensional single story structure mounting on SFP, DCFP and TCFP isolators investigated employing a variety range of isolators and the velocity (PGV) of the forward directivity and the fling step pulses as the main variables of the near field earthquakes. The maximum isolator displacement and base shear are selected as main seismic responses. Peak seismic responses of different isolator types are compared to emphasize the efficiency of each one under near field earthquakes. It is demonstrated that rising the PGVs increases the isolator displacement and base shear of structure. The effects of the forward directivity are greater than the fling step pulses. Furthermore, TCFP isolator is more effective to control the near field effects than the other friction pendulum isolators are. This efficiency is more significant in pulses with longer period and greater PGVs.

The Kinematical Analysis of Parallel Bars Double Piked Landing Motion (평행봉 double piked 내리기 동작의 운동학적 분석)

  • Kwon, Oh-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.311-318
    • /
    • 2010
  • This study examined the double piked dismount among the landing techniques of parallel bars based on three-dimensional motion analysis. Four male national gymnasts were the subjects. This study was performed to provide quantitative data highlighting players strengths and weaknesses to enable more stable landing technique. The variables analyzed were the position and velocity of center of gravity(CG) and angles of shoulder joints, hip joints, and trunk. The results are as follows: S1 secured the height of flight with fast vertical rise. After the easy spin in the air, he conducted a stable landing maintaining a proper hip joints angle. S2, S3, and S4, however, began the backward somersault already before leaving the bars, so they moved backward greatly making it more difficult to achieve a higher flight path. As a result, they couldn't control the velocity of their backward movement at landing. For a stable landing, they have to maintain the negative shoulder angle when rising, minimize both antero-posterioror side-to-side movements by doing a strong tap using hip joints, to secure the height of flight before the somersault. Results also show that at the descent, they should conduct rapid spinning by increasing their shoulder and hip joints to the maximum while controlling their velocity.