• Title/Summary/Keyword: Ring-oscillator

Search Result 146, Processing Time 0.025 seconds

The Electrical Properties of Self-Aligned High Speed Bipolar Transistor (자기정렬된 고속 바이폴라 트랜지스터의 전기적 특성)

  • 구용서;최상훈;구진근;이진효
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.786-793
    • /
    • 1987
  • This paper describes the design and fabrication of the polysilicon selfaligned bipolar transistor with 1.6\ulcorner epitaxy and SWAMI isolation technologies. This transistor has two levels of polysilicon. Also emitter and adjacent edge of polysilicon base contact of this PSA device are defined by the same mask, and emitter feature size is 2x4 \ulcorner. DC characteristic of the fabricated transistor was evaluated and analyzed for the SPICE input parameters. The minimum propagation delay time per gate of 330 ps at 1mW was obtained with 41 stage CML ring oscillator.

  • PDF

A Study on the Design of Voltage Clamp VCO Using Quadrature Phase (4분법을 이용한 전압 클램프 VCO의 설계에 관한 연구)

  • Seo, I.W.;Choi, W.B.;Joung, S.M.;Sung, M.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3184-3186
    • /
    • 1999
  • In this paper, a new structure of fully differential delay cell VCO using quadrature phase for low phase noise and high speed operation is suggested. It is realized by inserting voltage clamp circuit into input pairs of delay cells that include three-control current source having high output impedance. In this reason. this newly designed delay cell for VCO has the low power supply sensitivity so that the phase noise can be reduced. The whole characteristics of VCO were simulated by using HSPICE and SABER. Simulation results show that the phase noise of new VCO is quite small compared with conventional fully differential delay cell VCO and ring oscillator type VCO. It is also very beneficial to low power supply design because of wide tuning range.

  • PDF

A novel approach for designing of variability aware low-power logic gates

  • Sharma, Vijay Kumar
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.491-503
    • /
    • 2022
  • Metal-oxide-semiconductor field-effect transistors (MOSFETs) are continuously scaling down in the nanoscale region to improve the functionality of integrated circuits. The scaling down of MOSFET devices causes short-channel effects in the nanoscale region. In nanoscale region, leakage current components are increasing, resulting in substantial power dissipation. Very large-scale integration designers are constantly exploring different effective methods of mitigating the power dissipation. In this study, a transistor-level input-controlled stacking (ICS) approach is proposed for minimizing significant power dissipation. A low-power ICS approach is extensively discussed to verify its importance in low-power applications. Circuit reliability is monitored for process and voltage and temperature variations. The ICS approach is designed and simulated using Cadence's tools and compared with existing low-power and high-speed techniques at a 22-nm technology node. The ICS approach decreases power dissipation by 84.95% at a cost of 5.89 times increase in propagation delay, and improves energy dissipation reliability by 82.54% compared with conventional circuit for a ring oscillator comprising 5-inverters.

The Fabrication of Analog Compatible $I^2L$ (아나로그와 양립하는 $I^2L$)

  • Choi, Sang Hoon;Koo, Yong Seo;Koo, Jin Gun;Lee, Jin Hyo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.692-698
    • /
    • 1986
  • To fabricate digital I\ulcorner devices which are compatible with analog devices in a chip, phosphorus is implanted in the buried layer of I\ulcorner part which has already been diffused with arsenic impurity. Experimental results show that the muminim propagation delay time of I\ulcorner ring oscillator is 16-18 ns when the upward current gain of I\ulcorner transistor is 6-10.

  • PDF

A $3{\mu}m$ Standard Cell Library Implemented in Single Poly Double Metal CMOS Technology ($3{\mu}m$ 설계 칫수의 이중금속 CMOS 기술을 이용한 표준셀 라이브러리)

  • Park, Jon Hoon;Park, Chun Seon;Kim, Bong Yul;Lee, Moon Key
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.254-259
    • /
    • 1987
  • This paper describes the CMOS standard cell library implemented in double metal single poly gate process with 3\ulcornerm design rule, and its results of testing. This standard cell library contains total 33 cells of random logic gates, flip-flop gates and input/output buffers. All of cell was made to have the equal height of 98\ulcornerm, and width in multiple constant grid of 9 \ulcornerm. For cell data base, the electric characteristics of each cell is investigated and delay is characterized in terms of fanout. As the testing results of Ring Oscillator among the cell library, the average delay time for Inverter is 1.05 (ns), and the delay time due to channel routing metal is 0.65(ps)per unit length.

  • PDF

New Worstcase Optimization Method and Process-Variation-Aware Interconnect Worstcase Design Environment (새로운 Worstcase 최적화 방법 및 공정 편차를 고려한 배선의 Worstcase 설계 환경)

  • Jung, Won-Young;Kim, Hyun-Gon;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.80-89
    • /
    • 2006
  • The rapid development of process technology and the introduction of new materials not only make it difficult for process control but also as a result increase process variations. These process variations are barriers to successful implementation of design circuits because there are disparities between data on layout and that on wafer. This paper proposes a new design environment to determine the interconnect worstcase with accuracy and speed so that the interconnect effects due to process-induced variations can be applied to designs of $0.13{\mu}m$ and below. Common Geometry and Maximum Probability methods have been developed and integrated into the new worstcase optimization algorithm. The delay time of the 31-stage Ring Oscillator, manufactured in UMC $0.13{\mu}m$ Logic, was measured, and the results proved the accuracy of the algorithm. When the algorithm was used to optimize worstcase determination, the relative error was less than 1.00%, two times more accurate than the conventional methods. Furthermore, the new worstcase design environment improved optimization speed by 32.01% compared to that of conventional worstcase optimizers. Moreover, the new worstcitse design environment accurately predicted the worstcase of non-normal distribution which conventional methods cannot do well.

A DC-DC Converter Design for OLED Display Module (OLED Display Module용 DC-DC 변환기 설계)

  • Lee, Tae-Yeong;Park, Jeong-Hun;Kim, Jeong-Hoon;Kim, Tae-Hoon;Vu, Cao Tuan;Kim, Jeong-Ho;Ban, Hyeong-Jin;Yang, Gweon;Kim, Hyoung-Gon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.517-526
    • /
    • 2008
  • A one-chip DC-DC converter circuit for OLED(Organic Light-Emitting Diode) display module of automotive clusters is newly proposed. OLED panel driving voltage circuit, which is a charge-pump type, has improved characteristics in miniaturization, low cost and EMI(Electro-Magnetic Interference) compared with DC-DC converter of PWM(Pulse Width Modulator) type. By using bulk-potential biasing circuit, charge loss due to parasitic PNP BJT formed in charge pumping, is prevented. In addition, the current dissipation in start-up circuit of band-gap reference voltage generator is reduced by 42% and the layout area of ring oscillator is reduced by using a logic voltage VLP in ring oscillator circuit using VDD supply voltage. The driving current of VDD, OLED driving voltage, is over 40mA, which is required in OLED panels. The test chip is being manufactured using $0.25{\mu}m$ high-voltage process and the layout area is $477{\mu}m{\times}653{\mu}m$.

A New Process for a High Performance $I^2L$ (고성능 $I^2L$을 위한 새로운 제작공정)

  • Han, Cheol-Hui;Kim, Chung-Gi;Seo, Gwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 1981
  • A new I2L process for a high performance I2L structure is proposed. The modifiedstructure consists of a heavily doped extrinsic base and lowly doped intrinsic base where the collector regions are self-alignment with the intrinsic base regions. The proposed process untilizes spin-on sources as the diffusion sources and the self-alignment of collectors is achieved by using the hardened spin-on source as a diffusion mask. Test devices including a 13-stage ring oscillator have been fabricated by the proposed process on n/n+ silicon wafers with 6.5$\mu$m epitaxial layer. The maximum upward current gain of npn transistors is 8 for a three collector I2L cell. The speed-power product and minimum propagation delay for a one collector structure are 3.5 pJ and 50 ns, respectively.

  • PDF

Design and fabrication of current limiting InP Gunn diode for W-band waveguide FTO (W-band 도파관 FTO 적용을 위한 전류제한 InP Gunn diode 설계 및 제작)

  • Ko, Dong-Sik;Kwak, No-Seong;Kim, Young-Jin;Heo, Jun-Woo;Ko, Pil-Seok;Kim, Sam-Dong;Park, Hyun-Chang;Rhee, Jin-Koo;Chun, Young-Hoon;Lee, Seok-Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.45-54
    • /
    • 2014
  • In this paper, We have designed and fabricated 20 InP Gunn diodes using a current limiting epitaxial structure by MINT's optimized fabrication processes. We have also packaged the fabricated InP Gunn diodes using our optimized packaging method, and then designed and fabricated a W-band waveguide FTO to measure characteristics of the packaged InP Gunn diodes. The packaged InP Gunn diode have a ceramic ring, a Au plated stud and a lid, and a Maltese cross. The fabricated InP Gunn diodes have good RF characteristics such as high output powers (11.8~17 dBm) and limiting low currents (less than 400 mA) between 92.9 and 94.78 GHz.

A 285-fsrms Integrated Jitter Injection-Locked Ring PLL with Charge-Stored Complementary Switch Injection Technique

  • Kim, Sungwoo;Jang, Sungchun;Cho, Sung-Yong;Choo, Min-Seong;Jeong, Gyu-Seob;Bae, Woorham;Jeong, Deog-Kyoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.860-866
    • /
    • 2016
  • An injection-locked ring phase-locked loop (ILRPLL) using a charge-stored complementary switch (CSCS) injection technique is described in this paper. The ILRPLL exhibits a wider lock range compared to other conventional ILRPLLs, owing to the improvement of the injection effect by the proposed CSCS. A frequency calibration loop and a device mismatch calibration loop force the frequency error to be zero to minimize jitter and reference spur. The prototype chip fabricated in 65-nm CMOS technology achieves a $285-fs_{rms}$ integrated jitter at GHz from the reference clock of 52 MHz while consuming 7.16 mW. The figure-of-merit of the ILRPLL is -242.4 dB.